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Abstract: The thermal conductivity of carbon fiber reinforced polymers is crucial for new technologies
and is used in cutting-edge technologies such as sensors, heated rollers and anti-icing of airplane wings.
Researchers so far focused on coating conventional prepregs with thermally conductive materials
to enhance the transversal conductivity. Another strategy is followed in this study: Thermally
conductive matrices filled with graphite platelets were processed by a laboratory prepreg line.
Laminates produced from this type of prepregs show an enhancement in thermal conductivity by
3.3 times with a 20 vol% filler content relative to the matrix, and a 55 vol% fiber volume content in the
laminate. The research shows that the incorporation of conductive particles in the matrix is more
effective for increasing the conductivity than previous methods.
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1. Introduction

In the aerospace industry, where lightweight is an important topic to reduce the life-cycle costs of
airplanes, metals are increasingly replaced by carbon fiber reinforced polymers (CFRP) [1]. CFRP offer
a very high strength to weight ratio, but lack the properties of high thermal and electrical conductivity,
which are crucial for some applications. The thermal conductivity is needed to diffuse heat faster, in
order to avoid substantial overheating at one side of the part that could lead to microcracking and
mechanical defects. Furthermore, the material should conduct the heat from hotspots to a cooling fluid.
As explained by Rolfes and Hammerschmidt, the thermal conductivity also influences the mechanical
properties, and the calculation of the temperature fields in a part is therefore important for a safe
design with CFRP [2].

Only few researchers have so far focused on the thermal conductivity of carbon fiber reinforced
laminates. Some publications about the influence of fiber volume content on the thermal conductivity
can be found. Rolfes and Hammerschmidt simulated the thermal conductivity with different fiber
morphologies, i.e., Polyacrylonitrile (PAN) and pitch based carbon fibers, but the experimental data
measured by steady-state guarded hot plate (GHP) only show transverse thermal conductivities for
two different fiber volume contents [2]. Pilling et al. prepared laminates with four different fiber
volume contents of PAN-based fiber and measured them via transient hot-strip (THS) [3]. The results
from Rolfes and Pilling differ significantly, which can be attributed to the different measurement
methods used in their work. Very interesting results could also be found by Shim et al., who showed
the influence of the fiber shape on the thermal conductivity for pitch-based fiber [4].

One simple strategy to enhance the thermal conductivity is the coating of conventional prepregs
with conductive materials. Han and Chung used carbon black, Carbon Nanotubes (CNT) and chopped
carbon fiber as a conductive coating. However, the used filler content of up to 0.8 vol% is rather
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small. With the guarded hot plate method, they measured an increase in thermal conductivity from
1.091 W/mK to 1.453 W/mK, which is about 33%, with the coating with CNT and a fiber volume
content of 65% [5]. Remarkably, the measured conductivity of the unmodified laminate differs
from the experimental value of Rolfes, although the fiber volume content is at a comparable level.
This can be either attributed to the use of different carbon fiber, voids in the laminates or the different
measurement techniques. To compare the results from different researchers, the enhancement in the
thermal conductivity in Table 1 is shown in relative values.

The most common approach to enhance the conductivity in epoxy resins without fiber
reinforcement is the incorporation of a conductive filler. Carbon-based fillers (graphite [6], carbon
nanotubes [7], carbon black [8], and graphene [9]), metallic fillers (Ag, Cu [10], Al [11], and TiO2),
ceramic fillers (BN [12], AlN [13], Si [14,15], and ZrB2 [16]) and vegetal fibers [17] can be distinguished.

Promising results could be found with graphene, e.g., a conductivity of 2 W/mK was found in an
epoxy matrix with 15 vol% graphene [18]. As known from the literature, the incorporation of nanotubes
leads to very high viscosity, which reduces the processability of polymer/nanotube composites [19].
In an elaborative review, Burger et al. concluded that nanofillers may not be suitable to achieve high
thermal conductivity, not only because of the difficulty to incorporate higher loadings of filler, but
also due to the ineffective heat transport in the matrix [20]. The high number of polymer/nanotube
interfaces leads to phonon scattering, reducing the thermal conductivity of the composite material.

Only a single publication dealing with the approach to use conductive epoxy matrices was
identified [21]. The authors used boron-nitride as a filler and a mesophase pitch fiber as reinforcement.
However, the fiber volume content of the specific samples is not mentioned.

The approach of the underlying research is to improve the thermal conductivity of carbon fiber
reinforced composites by the incorporation of filler in the epoxy matrix. First, the effect of graphite as a
conductive filler in an epoxy matrix is studied. From the conductive matrix, a carbon fiber reinforced
prepreg is produced and processed into laminates.

Table 1. Transverse conductivities of samples from the literature and their fiber volume content (FVC)
and measurement methods as Laser Flash Analysis (LFA).

Sample FVC Measuring
Method

Enhancement
Method

Thermal
Conductivity

Enhancement (%)

Epoxy/Carbon
Fiber [5] 65.0 proprietary Coating of prepreg:

0.4% SWNT 33.2%

Epoxy/Mesophase
Pitch Fiber [21] n.a. LFA Matrix

modification 78.9%

Underlying
research 55 LFA Conductive matrix:

20 vol% graphite 330%

2. Production and Characterization Methods

2.1. Materials

The resin Tetraglycidylmethylenedianiline (TGMDA, EpikoteTM RESIN 496, Hexion Inc.,
Columbus, OH, USA) is tetra-functional with an epoxy equivalent of 115 g/eq and was cured
with Diethyltoluenediamine (XB3473TM, DETDA, hydrogen equivalent weight 43 g/eq). Graphite
(Imerys Graphite & Carbon, Bodio, Switzerland) with the trade name Graphit Timrex® KS6 and KS44
was used as conductive filler. The filler is characterized by a platelet-shape and an average particle
size of 3.6 µm (D50) and 18.4 µm (D50), according to the manufacturer. The density is 2.255 g/cm3.
The particle size distribution was measured and can be found in Figure 1. The data measured in our
lab slightly differs from the manufacturer’s data. A PAN based fiber 12K A-49 (DowAksa, Atlanta, GA,
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USA) with a tensile strength of around 4900 MPa and a Young’s modulus of 250 GPa has been used for
the prepreg production.J. Compos. Sci. 2019, 3, x 3 of 12 

 

 

Figure 1. Particle size distribution of the used graphite types. 
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100 cm3 of the sample with a15 vol% graphite content, 85 cm3 resin/hardener and 15 cm3 graphite 
were mixed. Densities of 2.225 g/cm³ for the graphite and 1.2 g/cm³ for the resin were used for the 
calculations, in order to measure the relevant mass of the resin and filler. A three-roll mill (EXAKT 
120EH-450, Norderstedt, Germany) was used to homogeneously disperse the filler in the matrix with 
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First of all, the unidirectional rovings of 12K carbon fibers are pre-spread on the pre-spreading 
unit, as shown in Figure 2. The resin film was coated at 25 °C on a siliconized carrier paper in the 
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Figure 1. Particle size distribution of the used graphite types.

2.2. Resin Preparation and Curing

Resin and hardener were stirred at a stoichiometric ratio of 72:28. The mixture was degassed at
10–20 mbar. The mass ratio of graphite is related to the volume of the whole mixture, i.e., to achieve
100 cm3 of the sample with a 15 vol% graphite content, 85 cm3 resin/hardener and 15 cm3 graphite
were mixed. Densities of 2.225 g/cm3 for the graphite and 1.2 g/cm3 for the resin were used for the
calculations, in order to measure the relevant mass of the resin and filler. A three-roll mill (EXAKT
120EH-450, Norderstedt, Germany) was used to homogeneously disperse the filler in the matrix with
opening gaps of 63 and 21 µm. The samples were cured under pressure in a laboratory press at 120,
160 and 200 ◦C, at each temperature for 1 h with a heating rate of 10 K/min. A postcuring at 220 ◦C for
2 h followed, before cooling down at a rate of 5 K/min.

2.3. Prepreg Production

The unidirectional prepregs were produced via hot-melt processing at the laboratory scale prepreg
impregnation machinery of the University of Bayreuth.

First of all, the unidirectional rovings of 12K carbon fibers are pre-spread on the pre-spreading
unit, as shown in Figure 2. The resin film was coated at 25 ◦C on a siliconized carrier paper in the
coating unit of the prepreg machinery. Finally, the resin film and pre-spread fibers were impregnated
to the final prepreg with a calendar (25 ◦C). The produced prepregs were then hand-lain up to the
final unidirectional prepreg laminates and cured with the same parameter as the neat and filled resin
samples. The aimed fiber volume content was set to 55 vol% to ensure the comparability of the
prepreg laminates.
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2.4. Morphological Characterization

All samples were scanned with Skyscan 1072 Micro-CT (Bruker, Artselaar, Belgium), with a linear
resolution of 3.50 µm at a magnification of 80 with an accelerating voltage of 80 kV and tube current
of 122 µA. The projection images were acquired over 180◦ at angular increments of 0.23◦ with an
exposure time of 2.57 seconds per frame, averaged over six frames. The three-dimensional images
were reconstructed using the reconstruction software provided by the manufacturer (NRecon Version
1.6.4.1, Kontich, Belgium), where the ring artifact reduction was applied as needed.

The samples were sputtered by a Cressington 108 Auto Sputter Coater (Watford, UK) with an Au
coating thickness of 13 nm, and they were studied in a Jeol JSM 6510 Scanning Electron Microscope
(Tokyo, Japan).

2.5. Thermal Conductivity Measurements

The thermal conductivity was measured by the laser flash method (LFA) with LFA447 (Netzsch
GmbH, Selb, Germany). Five shots were used with a duration of 30 ms each, and the signal was
fitted with the Proteus Analysis Software (Netzsch GmbH, Selb, Germany), using the Cape-Lehman
algorithm. The tested samples had a diameter of 12.7 mm. The laser flash analysis is the standard
instrument for the determination of thermal transport properties of carbon fiber reinforced polymers
because of its convenience, short experiment times and large measurement range [2,22]. The density
was measured with AG245 (Mettler-Toledo International Inc., Columbus, OH, USA), using Archimedes’
principle. The thermal heat capacity was measured by DSC 1 (Mettler-Toledo International Inc., USA)
according to ASTM E1269–11 with a heating rate of 20 K/min.

3. Results and Discussions

3.1. Neat and Filled Resin Conductivity

For a thorough investigation, first the effects of the filler on the thermal conductivity should
be evaluated. This section focuses only on the effects in composites of resin and filler, whereas
the next sections focus on the fiber-reinforced composites. The thermal conductivity values of the
composites versus the filler content are shown in Figure 3. At lower filler concentrations of up to
10 vol%, the increase in the thermal conductivity is almost linear. At higher filler concentrations,
the thermal conductivity increases exponentially. This behavior has already been described by
several researchers [20,23,24]. At higher filler concentrations, a remarkable difference in the thermal
conductivity can be found between the composites with small and larger particles. In the literature,
contradicting influences of the particle size on the thermal conductivity have been reported. Boudenne
et al. reported higher thermal conductivities for small copper particles of 12 µm in average in a
Polypropylene matrix than for larger particles of 200 µm [25]. Zhu et al. reported contradictory results
with boron-nitride of 70 nm and 7 µm in an epoxy matrix. [26] In both studies, it seems that the
morphology and shape of the filler was not taken into account. In this study, the shape of the particles
is very similar, as can be observed in Figure 4. The aspect ratio was calculated from 60 measurements
of the particles observed in Scanning Electron Microscope (SEM) and is at 36 ± 4 for the smaller and
32 ± 5 for the larger particles. The higher thermal conductivity for composites with larger particles
can be explained from a thermo-mechanical point of view. Heat is conducted by phonons in polymer
composites. It seems that for the thermal conductivity, the interfaces between the conducting parts
of the composite are fundamental. As elaborated by Burger et al., the phonons are scattered at the
interfaces, which lowers the thermal conductivity [20]. As a result, we can evaluate the resin-filler
interfaces and the filler-filler interfaces, in case the particles are in contact with each other. The larger
the particle size, the lower the number of interfaces at a given volume fraction of the filler. As already
explained by Zhu, the lower number of contacts between particles can explain the better conductivity
of larger sized particles [26]. The particle-matrix interaction seems to be more significant than the
particle-particle interaction. As explained, the former leads to phonon scattering at the interface.
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Smaller particles therefore lead to more interfaces, which result in an increase in phonon scattering
and therefore a higher thermal resistance.J. Compos. Sci. 2019, 3, x 5 of 12 
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Besides the size of the filler shown in Figure 4, the morphology of the samples is crucial for the
evaluation of the results from the thermal conductivity. Several methods have been used to study the
morphology, from which µCT and SEM seem the most promising. The µCT scans of composites with
particles of 3.6 and 18.4 µm are shown in Figure 5. One can clearly see that no voids can be found in the
material. The distribution of the filler seems very homogenous. The voxel-size of the µCT is ~2.5 µm,
so agglomerations of the micro-sized graphite particles can be excluded. For a deeper investigation
of the morphologies, several SEM pictures have been taken. Figure 6 shows two fracture surfaces
of composites with 3.6 and 18.4 µm graphitic platelets. Both confirm the homogenous distribution
in the matrix.
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3.2. Laminate Characterization

As shown by Rolfes, the fiber volume content has an influence on the thermal conductivity [2].
To verify the comparability of the samples, the fiber volume content has been measured and calculated
by thermogravimetry. The method has been described and verified by Monkiewitsch [27]. As shown
in Table 2, the fiber volume content varies only slightly between the samples, so we can expect them to
be comparable.

Table 2. Fiber volume content of the produced laminates.

Prepreg Laminate Fiber Volume Content

unfilled 48 vol%
Graphite ø 18.4 µm–10 vol% 55 vol%
Graphite ø 18.4 µm–15 vol% 53 vol%
Graphite ø 18.4 µm–20 vol% 57 vol%
Graphite ø 3.6 µm–15 vol% 56 vol%

Figure 7 shows the thermal conductivities of the prepreg laminates measured by LFA. The unfilled
resin has a thermal conductivity of 0.23 W/mK, which is increased to 0.36 W/mK by the incorporation
of carbon fibers. The values are lower than those of other researchers. Rolfes and Hammerschmidt
used fibers with a transverse thermal conductivity of 2 W/mK with round carbon fibers; they measured
a transverse thermal conductivity of 0.708 W/mK with 64.3 vol% of fiber with the steady-state guarded
hot plate (GHP) setup. For the cross-section type used in this study, Shim et al. showed a significantly
lower thermal conductivity [4]. The values are also not comparable, as different measurement methods
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have been used, and given that Rolfes and Hammerschmidt already showed that there is a strong
variation in the measured thermal conductivity with the GHP and the THS methods [2]. When the
conductive graphite filled resin with a thermal conductivity of 0.7 W/mK is used for the prepreg
production, the conductivity in the laminate increases to 0.91 W/mK for the large particles.
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Although the results from the graphite filled resins without carbon fibers indicate that larger
particles lead to higher conductivities in the composite, the effect could not be repeated with carbon
fiber reinforced composites. Figure 7 shows a strong effect of the filler volume content of the laminates
on the thermal conductivity, as the conductivity of the laminate significantly increases when the filler
content is varied from 10 to 15 and to 20 vol%.

Figure 8 shows records from µCT of the prepreg laminates. The images show that the samples
are very homogenous. From the pictures that have been evaluated, no voids could be found in the
prepreg laminates. For a deeper understanding of the morphology of the prepreg laminates, optical
microscopy has been used to produce and analyze polished micrograph sections. In the unfilled
laminate, the fibers are well distributed. They are not absolute homogenously distributed, as resin-rich
areas can be detected in the cross-section. The laminates with filled matrices have a layered structure
with layers of resin and layers of fiber. As can be seen in Figure 9, the distance between the carbon
fiber layer varies between 80 and 200 µm. From the evaluated images, no direct contact between the
carbon fiber layers could be found.J. Compos. Sci. 2019, 3, x 8 of 12 
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The smaller particles of graphite had been chosen to test the assumption that particles with a
smaller diameter than the fibers could be adsorbed between the fiber layer. As shown in Figure 10,
only very few particles of the graphite with 3.6 µm will be pushed between the carbon fiber layers
during the prepreg production and the curing process. Most particles stay in the matrix between the
layers. Almost no larger particles of 18.4 µm could be found between the carbon fibers in the laminate.
It seems that the layer of carbon-fiber is very dense and hence particles are not able to be infiltrated.
Also, the very high viscosity of the graphite filled epoxy resin might reduce the movability of the
graphite particles.
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4. Micromechanical Calculations

The Lewis and Nielsen’s formula is used in various publications to calculate the thermal
conductivity of composites [2,22,28,29]. It is formulated as follows:

λk = λM
1 + A B φ
1− B φ C

(1)

where φ is defined as the filler content and λM as the conductivity of the matrix. The factors A, B and
C reflect the filler geometry, orientation and thermal conductivity. According to Guth [30], A can be
calculated with the aspect ratio p of the filler:

A =
p

[2 ln(2p)] − 3
+ 1 (2)

B is not an independent variable, since it also reflects the conductivity of the filler and matrix, and C
reflects the maximal packing density φmax:

B =

(λF)
(λM)

− 1

(λF)
(λM)

+ A
(3)
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C = 1 +
(1−φmax)

φ2
max

φ (4)

The maximal packing density of the fibers in the composite is 78%, with the thermal conductivity of
the matrix given above and the transverse thermal conductivity of the fiber of 1.1 W/mK. The transverse
thermal conductivity of the fiber can only be estimated as no method to measure a single fiber could
be identified in the literature. Rolfes and Hammerschmidt [2] calculated a transverse conductivity of
2 W/mK from their experimental data for round-type PAN fiber. For the cross-section type used in
this study, Shim et al. showed a significantly lower thermal conductivity, so a thermal conductivity
of 1.1 W/mK seems reasonable for this study [4]. A is calculated to 0.83 with an aspect ratio of 0.5,
as suggested in the literature [2].

Figure 11 shows the experimental data and calculations with the above equation of transverse
thermal conductivities of the laminates. For the unfilled laminate and the laminate with 10 vol%
of graphitic filler, the Lewis/Nielsen calculation overestimates the transverse thermal conductivities.
For the laminates of 15 vol% of graphite and 20 vol% of graphite, the calculations with the Lewis/Nielsen
formula seem very accurate.
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5. Conclusions

The aim of this work was to explore the influence of a graphitic filler on the thermal conductivity
of an epoxy-based carbon-fiber reinforced polymer. The following conclusions can be drawn from the
analysis of the results:

• In the epoxy resin, a non-linear dependence of the thermal conductivity from the filler volume
content could be found. Larger particles showed a higher conductivity, most probably due to
lower phonon scattering.

• In the carbon fiber reinforced composites, the thermal conductivity was enhanced by a factor of 4
with 20 vol% of graphitic particles. The fiber reinforced laminate showed a different behavior
compared to the epoxy graphite composites: Small and large particles showed very similar
transverse thermal conductivities.

Further developments are needed to understand the influence of the fiber on the thermal
conductivity. As stated above, no measurement method has been developed so far to measure the
conductivity of carbon fibers, which makes simulations almost impossible. For a further increase in
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the thermal conductivity, conductive fibers might be used. Furthermore, a deeper understanding of
the mechanical properties of CFRP is crucial for the application of the materials in the industry.
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