

Supplementary Materials:

Fabrication of Nanostructured Kaolinite Doped Composite Films from Silicone Rubber with Enhanced Properties

Abdullah Muhammad Zakaria, Shaikat Chandra Dey, Muhammad Mominur Rahman, Mithun Sarker, Md. Ashaduzzaman and Sayed Md. Shamsuddin*

S1. FTIR Analysis of SR and Kaolinite

The starting SR displayed the intense signal at 790 cm⁻¹ corresponding to the coupling of stretching vibration of Si-C and rocking vibration of –CH₃. The doublet identified at 1015 cm⁻¹ and 1074 cm⁻¹ is the characteristic marker of stretching vibration of Si-O-Si backbone of SR. The rocking and bending vibrations of Si-CH₃ were clearly detected at 866 cm⁻¹ and 1259 cm⁻¹. The absorption band obtained at 1408 cm⁻¹ has been ascribed to the rocking vibration of –CH₂. The peak found at 2964 cm⁻¹ has been attributed to the stretching vibration of CH₃ [1]. Kaolinite exhibited characteristic signature at 3688 cm⁻¹ which is assigned to the stretching vibration of inner-surface hydroxyls positioned above the aluminium layer. The peak at 3620 cm⁻¹ is assigned to the stretching vibration of inner -OH (hydroxyls) located below the aluminium atoms which extend towards the vacant octahedral hole (intralayer cavity) of kaolinite [2]. The absorption band recorded at 1115 cm⁻¹ indicates Si-O symmetric stretching. The signal at 911 cm⁻¹ corresponds to the bending vibration of inner hydroxyls (Al-OH). Finally, the Si-O-Si inter tetrahedral bridging bond in SiO₂ has been detected at 788 cm⁻¹ [3,4].

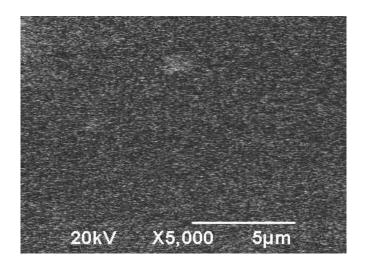


Figure S1. SEM microphotograph of SR at X5000.

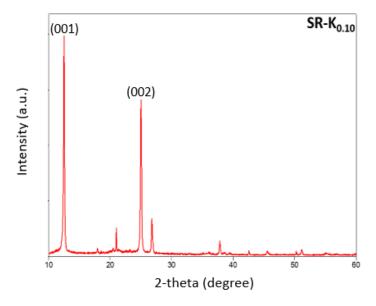


Figure S2. XRD pattern of SR-K_{0.10}.

Table S1.	Calculated	standard	deviations	of the	observed	data f	or investiga	ted mechanic	al properties	s.

Film Code	Tensile Strength (MPa)	Young's Modulus (MPa)	Elongation at Break (%)
SR	0.077	0.021	19.816
SR-K0.01	0.111	0.015	21.897
SR-K0.03	0.120	0.019	22.581
SR-K0.05	0.114	0.026	18.434
SR-K0.07	0.145	0.021	22.309
SR-K0.10	0.167	0.021	18.601

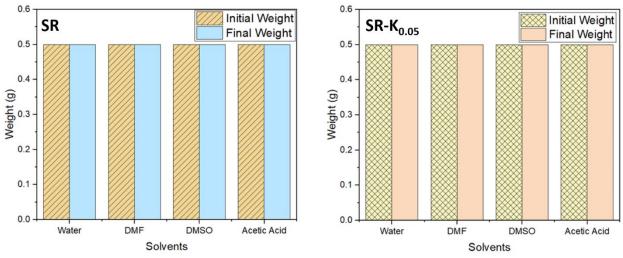


Figure S3. Effect of solvents on weight loss of SR and SR-K0.05.

References

- **1.** Feng, J.; Zhang, Q.; Tu, Z.; Tu, W.; Wan, Z.; Pan, M.; Zhang, H. Degradation of silicone rubbers with different hardness in various aqueous solutions. *Polym. Degrad. Stab.* **2014**, *109*, 122-128.
- 2. Zhang, X.; Xu, Z. The effect of microwave on preparation of kaolinite/dimethylsulfoxide composite during intercalation process. *Mater. Lett.* 2007, *61*, 1478-1482.
- **3.** Caglar, B. Structural characterization of kaolinite-nicotinamide intercalation composite. *J. Mol. Struct.* **2012**, *1020*, 48-55.
- **4.** Saikia, B.J.; Parthasarathy, G. Fourier transform infrared spectroscopic characterization of kaolinite from Assam and Meghalaya, Northeastern India. *J. Mod. Phys.* **2010**, *1*, 206.