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Abstract: In this paper, a new four-variable refined shell theory is developed for free vibration analysis
of multi-layered functionally graded carbon nanotube-reinforced composite (FG-CNTRC) doubly
curved shallow shell panels. The theory has only four unknowns and satisfies zero stress conditions at
the free surfaces without correction factor. Five different types of carbon nanotube (CNTs) distribution
through the thickness of each FG-CNT layer are considered. Governing equations of simply supported
doubly curved FG-CNTRC panels are derived from Hamilton’s principle. The resultant eigenvalue
system is solved to obtain the frequencies and mode shapes of the anti-symmetric cross-ply laminated
panels by using the Navier solution. The numerical results in the comparison examples have
proved the accuracy and efficiency of the developed model. Detailed parametric studies have been
carried out to reveal the influences of CNTs volume fraction, CNTs distribution, CNTs orientation,
dimension ratios and curvature on the free vibration responses of the doubly curved laminated
FG-CNTRC panels.

Keywords: free vibration analysis; doubly-curved shell and panel; nano-composites; functionally
graded carbon nanotube-reinforced composite (FG-CNTRC); four-variable refined shell theory

1. Introduction

Functionally graded carbon nanotube-reinforced composites were first proposed by Shen [1]
and have been widely accepted as a new advanced material. In functionally graded carbon
nanotube-reinforced composite (FG-CNTRC) structures, the CNTs are assumed to be distributed
and functionally graded with certain rules along the desired direction to improve the mechanical
properties of the structures. Due to the curvature effect, doubly curved shell structures possess
increased structural stiffness as compared to flat ones. Therefore, doubly curved shells are often
employed to fabricate structural elements of modern constructions made of advanced materials in
various engineering disciplines such as aerospace, civil, marine and mechanical engineering. It is thus
significant and very meaningful to explore the mechanical response of doubly curved shells made of
laminated FG-CNTRC.

Due to its simplicity and effectiveness, the equivalent single-layer model is used for multi-layer
composite materials. Among the equivalent single layer models, the model based on the classical
theory (CPT) [2] only provides accurate results for the thin shell because it completely neglects the
effect of shear deformation. To overcome the limitations of CPT, the model based on the first-order
shear deformation theory (FSDT) [3] takes into account the shear deformation effects and provides
relatively accurate results for both thin and moderately thick shells, but it has to use shear correction
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factor. Therefore, the model based on the higher-order shear deformation theory (HSDT) [4–6] is often
desirable. However, it is not convenient to use HSDT because the equations of motions based on
HSDT are complicated and difficult to solve. Therefore, the development of simple HSDT is needed.
In addition to these, a four-variable deformation theory [7–11] has been developed and applied recently.
In this theory model, the transverse shear stresses are satisfied to be parabolic and to be zero on free
surfaces. Furthermore, it has only four unknowns, thus the governing equations can be reduced to four.

Based on the above-mentioned theories, various studies have been done to investigate the bending,
buckling and vibration responses of FG-CNTRC shells and panels. Using the third-order shear
deformation theory, Mehrabadi and Aragh [12] investigated static behavior of FG-CNTRC cylindrical
shells. Aragh et al. [13] and Yas et al. [14] studied free vibration of FG-CNTRC cylindrical panels.
Alibeigloo [15] analyzed the free vibration behavior of the FG-CNTRC cylindrical panel embedded in
piezoelectric layers based on the three-dimensional theory of elasticity and the state-space technique.
Lei et al. [16] presented the first-known dynamic stability of FG-CNTRC cylindrical panels under
static and periodic axial force. Rasool el al. [17] analyzed the stress wave propagation of FG-CNTRC
cylinders subjected to an impact load by using an element-free method. In [18], Shen and Zhang
investigated thermal post-buckling of FG-CNTRC cylindrical shells subjected to a uniform temperature
rise. Based on a HSDT with a von Kármán-type of kinematic nonlinearity, Shen [19] presented the
thermal post-buckling and torsional post-buckling of FG-CNTRC cylindrical shells. Furthermore, Shen
and Xiang also performed research on nonlinear vibration [20], and post-buckling [21] behavior of
FG-CNTRC cylindrical shells in the thermal environment. A post-buckling analysis of FG-CNTRC
cylindrical panels subjected to axial compression was also presented by Liew et al. [22]. In this study, Liew
et al. used a meshless approach and arc-length method combined with the modified Newton–Raphson
method to trace the post-buckling path. Using the element-free kp-Ritz method, Lei et al. [23]
investigated free vibration of FG-CNTRC rotating cylindrical panels. Based on the generalized
differential quadrature method (GDQM)and the finite element (FE) method, Tornabene et al. [24] and
Thomas et al. [25], respectively, investigated free vibration of FG-CNT-reinforced laminated composite
doubly curved shells.

The purpose of this paper is to develop a new four-variable refined shell theory for free vibration
analysis of multi-layered functionally graded carbon nanotube-reinforced composite doubly curved
panels. The present theory has only four unknowns but it satisfies the stress-free boundary conditions
on the top and bottom surface without using shear correction factors. The distribution of the carbon
nanotube (CNT) through the thickness of each layer may be functionally graded or uniformly
distributed. The resultant eigenvalue system is solved to obtain the frequencies and mode shapes of
the anti-symmetric, cross-ply laminated panels by Navier solution. The accuracy of the presented
formulation is investigated by comparing the obtained natural frequencies with existing results in the
literature. Also, a novelty parameter study of the laminated FG-CNTRC doubly-curved panels of
which the geometrical parameters, CNTs distributions, the volume fraction of CNTs, as well as the
number of layers are also reported in detail.

2. Theoretical Formulations

2.1. Description of the Model

As shown in Figure 1, a doubly curved FG-CNTRC shell panel in the orthogonal curvilinear
coordinate system (x, y, z) is considered as the modal analysis. The panel has curvilinear length a in
the x-direction, curvilinear width b in the y-direction, thickness h in the z-direction. In the middle
surface of the panel, the principal radii of curvature, denoted by Rx and Ry, are assumed as constants.
This results in unit Lamé parameters. Here, four special kinds of the doubly curved shell panels are
investigated such as plate (PLA, Rx = Ry =∞), cylindrical (CYL) panel (Rx = R and Ry =∞), spherical
(SPH) panel (Rx = Ry), and hyperbolic paraboloid (HPR) panel (Rx = −Ry).
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Figure 1. Schematic of the laminated functionally graded carbon nanotube-reinforced composite
(FG-CNTRC) doubly curved panel.

2.2. Material Properties of Functionally Graded Carbon Nanotube-Reinforced Composite

In the present study, the lamina is assumed to be perfectly bonded at layer interfaces. As shown
in Figure 2, five types of functionally graded distributions of CNTs in each layer are taken into
consideration, named as UD, FG-A, FG-V, FG-X and FG-O.

Figure 2. Configurations of the FG-CNTRC panels: (a) UD; (b) FG-A; (c) FG-V; (d) FG-X; (e) FG-O.

For these cases, the CNT volume fractions are given as [26]:

UD : VCNT(z) = V∗CNT;

FG−V : VCNT(z) = 2V∗CNT
z−zk

zk+1−zk
;

FG−A : VCNT(z) = 2V∗CNT
zk+1−z
zk+1−zk

;

FG−O : VCNT(z) = 2V∗CNT

(
1− |2z−zk−zk+1|

zk+1−zk

)
;

FG−X : VCNT(z) = 2V∗CNT

(
|2z−zk−zk+1|

zk+1−zk

)
(1)

where zk and zk+1 are the coordinates of the k-th layer to the reference plane (z = 0). V∗CNT is the given
volume fraction of CNTs and can be calculated as:

V∗CNT =
wCNT

wCNT + (ρCNT/ρm) − (ρCNT/ρm)wCNT
(2)
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in which, wCNT is the mass fraction of the carbon nanotube, ρm and ρCNT are mass densities of the
matrix and the CNT, respectively. The effective material properties of FG-CNTRC of each layer can be
expressed by the extended rule of the mixture as follows [27]:

E11(z) = η1VCNT(z)ECNT
11 + Vm(z)Em

η2
E22(z)

=
VCNT(z)

ECNT
22

+
Vm(z)

Em ;

η3
G12(z)

=
VCNT(z)

GCNT
12

+
Vm(z)

Gm ;

ρ(z) = VCNT(z)ρCNT + Vm(z)ρm;

ν12 = V∗CNTν
CNT
12 + Vm(z)νm

(3)

where ECNT
11 , ECNT

22 , Em and GCNT
12 , Gm are the Young’s moduli and shear modulus of CNT and matrix;

η1, η2 and η3 are CNT/matrix efficiency parameters; VCNT(z) and Vm(z) are volume fractions of CNT
and matrix, and are related by VCNT(z) +Vm(z) = 1; vCNT

12 and vm are Poisson’s ratio of CNT and matrix.

2.3. Kinematic Relations

This work aims to establish a new shear deformation shell theory. The main idea of the present
theory comes from the four-variable refined theory [8,9,11,28,29]. According to assumptions of
various four-variable refined theories, the transverse displacement w is partitioned into the bending
component wb and shear component ws, the in-plane displacements u and v are also partitioned into
the extension component u0, v0, the bending component ub, vb, and shear component us, vs. Therefore,
the displacement field in the doubly curved shell space can be expressed as follows:

u(x, y, z, t) =
(
1 + z

Rx

)
u0(x, y, t) − z∂wb(x,y,t)

∂x − f (z) ∂ws(x,y,t)
∂x

v(x, y, z, t) =
(
1 + z

Ry

)
v0(x, y, t) − z∂wb(x,y,t)

∂y − f (z) ∂ws(x,y,t)
∂y

w(x, y, z, t) = wb(x, y, t) + ws(x, y, t)

(4)

where u0, v0 denote the displacements along x and y coordinate directions of the corresponding point on
the reference surface; wb and ws are the bending and shear components of the transverse displacement,
respectively; f (z) represents shape function determining the distribution of the transverse shear strains
and stresses along the thickness. By the same methodology, in the previous study [29], we proposed
a new shape function f (z) as follows:

f (z) = z
[
−

1
8
+

3
2

( z
h

)2
]

(5)

Detail steps to construct this shape function for shell panels are listed in Appendix A.
The strains associated with the displacement field in Equation (4) are:

εxx = 1
1+z/Rx

[
ε0

x + zκb
x + f (z)κs

x

]
;

εyy = 1
1+z/Ry

[
ε0

y + zκb
y + f (z)κs

y

]
;

γxy = 1
1+z/Rx

[
γ0

xy + zκb
xy + f (z)κs

xy

]
+ 1

1+z/Ry

[
γ0

yx + zκb
yx + f (z)κs

yx

]
;

γxz =
1

1+z/Rx
g(z)γs

xz;
γyz =

1
1+z/Ry

g(z)γs
yz

(6)
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where:
ε0

x =
(
∂u0
∂x +

wb
Rx

+ ws
Rx

)
; γ0

xy = ∂v0
∂x ;

ε0
y =

(
∂v0
∂y +

wb
Ry

+ ws
Ry

)
; γ0

yx = ∂u0
∂y ;

kb
x =

(
1

Rx

∂u0
∂x −

∂w2
b

∂x2

)
; κb

y =
(

1
Ry

∂v0
∂y −

∂w2
b

∂y2

)
;

κb
xy =

(
1

Ry

∂v0
∂x −

∂w2
b

∂x∂y

)
; κb

yx =
(

1
Rx

∂u0
∂y −

∂w2
b

∂x∂y

)
;

ks
x = −∂

2ws
∂x2 ; ks

y = −∂
2ws
∂y2 ; κs

xy = ∂2ws
∂x∂y ; κs

yx = − ∂
2ws
∂x∂y ;

γxz =
1

1+z/Rx
g(z) ∂ws

∂x ; g(z) = (1− f ′(z));

γyz =
1

1+z/Rx
g(z) ∂ws

∂y

(7)

The constitutive relation for an individual layer can be determined by the generalized Hooke’s
law, namely [30,31]: 

σk
xx
σk

yy
τk

yz
τk

xz
τk

xy


=



Q
k
11 Q

k
11 0 0 Q

k
16

Q
k
12 Q

k
22 0 0 Q

k
26

0 0 Q
k
44 Q

k
45 0

0 0 Q
k
45 Q

k
55 0

Q
k
16 Q

k
26 0 0 Q

k
66





εxx
εyy
γyz
γxz
γxy


(8)

where Q
k
i j are the transformed material constraints expressed in terms of material constants:

Q
k
11 = Q11 cos4 θk + 2(Q12 + 2Q66) sin2 θk cos2 θk + Q22 sin4 θk;

Q
k
12 = (Q11 + Q22 − 4Q66) sin2 θk cos2 θk + Q12

(
sin4 θk + cos4 θk

)
;

Q
k
22 = Q11 sin4 θk + 2(Q12 + 2Q66) sin2 θk cos2 θk + Q22 cos4 θk;

Q
k
16 = (Q11 −Q12 − 2Q66) sinθk cos3 θk + (Q12 −Q22 + 2Q66) sin3 θk cosθk;

Q
k
26 = (Q11 −Q12 − 2Q66) sin3 θk cosθk + (Q12 −Q22 + 2Q66) sinθk cos3 θk;

Q
k
66 = (Q11 + Q22 − 2Q12 − 2Q66) sin2 θk cos2 θk + Q66

(
sin4 θk + cos4 θk

)
;

Q
k
44 = Q44 cos2 θk + Q55 sin2 θk;

Q
k
45 = (Q55 −Q44) cosθk sinθk;

Q
k
55 = Q55 cos2 θk + Q44 sin2 θk.

(9)

in which, Qi j are the plane stress-reduced stiffnesses defined in terms of the engineering constants in
the material axes of the layer. For each CNT layer:

Q11 =
E11(z)

1−ν12ν21
; Q12 =

ν12E22(z)
1−ν12ν21

; Q22 =
E22(z)

1−ν12ν21
;

Q44 = G23(z); Q55 = G13(z); Q66 = G12(z)
(10)



J. Compos. Sci. 2019, 3, 104 6 of 21

2.4. Governing Equations

Hamilton’s principle is used herein to derive the equations of motion. In the absence of external
forces, the principle can be stated in the analytical form as [32]:∫ t2

t1

(δU − δK)dt = 0 (11)

where δU is the variation of the strain energy, δK is the variation of the kinetic energy, t1 and t2 are
arbitrary time variables. The strain energy of the plate can be calculated as:

U = 1
2

a∫
0

b∫
0

h/2∫
−h/2

(
σxxεxx + σyyεyy + τxyγxy + τxzγxz + τyzγyz

)(
1 + z

Rx

)(
1 + z

Ry

)
dzdydx

= 1
2

a∫
0

b∫
0

(
Nxxε0

xx + Nyyε0
yy + Nxyγ0

xy + Nyxγ0
yx + Mb

xxκ
b
xx + Mb

yyκ
b
yy + Mb

xyκ
b
xy + Mb

yxκ
b
yx+

Ms
xxκ

s
xx + Ms

yyκ
s
yy + Ms

xyκ
s
xy + Ms

yxκ
s
yx + Qysγs

yz + Qxsγs
xz

)
dxdy

(12)

where stress resultants (N, M and Q) are defined by:
Nxx

Nxy

Qxs

 =
n∑

k=1

∫ zk+1
zk

(
1 + z

Ry

)
σk

xx
σk

xy
τk

xz

dz;


Nyy

Nyx

Qys

 =
n∑

k=1

∫ zk+1
zk

(
1 + z

Rx

)
σk

yy
σk

yx
τk

yz

dz;

{
Mb

xx
Mb

xy

}
=

n∑
k=1

∫ zk+1
zk

(
1 + z

Ry

){ σk
xx
σk

xy

}
zdz;

{
Mb

yy
Mb

yx

}
=

n∑
k=1

∫ zk+1
zk

(
1 + z

Rx

){ σk
yy
σk

yx

}
zdz;{

Ms
xx

Ms
xy

}
=

n∑
k=1

∫ zk+1
zk

(
1 + z

Ry

){ σk
xx
σk

xy

}
f (z)dz;

{
Ms

yy
Ms

yx

}
=

n∑
k=1

∫ zk+1
zk

(
1 + z

Rx

){ σk
yy
σk

yx

}
f (z)dz.

(13)

Based on the constitutive relations (8), strain-displacement relation (6) and displacement field (4),
the force and moment resultants can be rewritten in terms of displacement components as:



Nxx

Nyy

Nxy

Nyx

Mb
xx

Mb
yy

Mb
xy

Mb
yx

Ms
xx

Ms
yy

Ms
xy

Ms
yx



=



A11 A12 A16 A16 B11 B12 B16 B16 B
s
11 Bs

12 B
s
16 Bs

16
A12 Â22 A26 Â26 B12 B̂22 B26 B̂26 Bs

12 B̂s
22 Bs

26 B̂s
26

A16 A26 A66 A66 B16 B26 B66 B66 B
s
16 Bs

26 B66 Bs
66

A16 Â26 A66 Â66 B16 B̂26 B66 B̂66 Bs
16 B̂s

26 Bs
66 B̂s

66
B11 B12 B16 B16 D11 D12 D16 D16 D

s
11 Ds

12 D
s
16 Ds

16
B12 B̂22 B26 B̂26 D12 D̂22 D26 D̂26 Ds

12 D̂s
22 Ds

26 D̂s
26

B16 B26 B66 B66 D16 D26 D66 D66 D
s
16 Ds

26 D
s
66 Ds

66
B16 B̂26 B66 B̂66 D16 D̂26 D66 D̂66 Ds

16 D̂s
26 Ds

66 D̂s
66

B
s
11 Bs

12 B
s
16 Bs

16 D
s
11 Ds

12 D
s
16 Ds

16 E
s
11 Es

12 E
s
16 Es

16
Bs

12 B̂s
22 Bs

26 B̂s
26 Ds

12 D̂s
22 Ds

26 D̂s
26 Es

12 Ês
22 Es

26 Ês
26

B
s
16 Bs

26 B66 Bs
66 D

s
16 Ds

26 D
s
66 Ds

66 E
s
16 Es

26 E
s
66 Es

26
Bs

16 B̂s
26 Bs

66 B̂s
66 Ds

16 D̂s
26 Ds

66 D̂s
66 Es

16 Ês
26 Es

26 Ês
66





ε0
xx
ε0

yy
γ0

xy
γ0

yx
κb

xx
κb

yy
κb

xy
κb

yx
κs

xx
κs

yy
κs

xy
κs

yx



(14)

{
Qys

Qxs

}
=

 Âs
44 As

45
As

45 A
s
55

{ γs
yz
γs

xz

}
(15)
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in which: {
Ai j, Bi j, Di j, Bs

i j, Ds
i j, As

i j

}
=

N∑
1

∫ z+1
zk

Q
(k)
i j

{
1, z, z2, f (z), z f (z), g2(z)

}
dz;

{
Ai j, Bi j, Di j, B

s
i j, D

s
i j, A

s
i j

}
=

{
Ai jx, Bi jx, Di jx, Bs

i jx, Ds
i jx, As

i jx

}
+

{
Bi jx,Di jx,Ei jx,Ds

i jx,Es
i jx,AAs

i jx

}
Ry

;

{
Ai jx, Bi jx, Di jx, Ei jx, Bs

i jx, Ds
i jx, Es

i jx, As
i jx, AAs

i jx

}
=

N∑
1

∫ z+1
zk

Q
(k)
i j
{1,z,z2,z3, f (z),z f (z),z2 f (z),g(z),zg(z)}

1+z/Rx
dz{

Âi j, B̂i j, D̂i j, B̂s
i j, D̂s

i j, Âs
i j

}
=

{
Ai jy, Bi jy, Di jy, Bs

i jy, Ds
i jy, As

i jy

}
+

{
Bi jy,Di jy,Ei jy,Ds

i jy,Es
i jy,AAs

i jy

}
Rx{

Ai jy, Bi jy, Di jy, Ei jy, Bs
i jy, Ds

i jy, Es
i jy, As

i jy, AAs
i jy

}
=

N∑
1

∫ z+1
zk

Q
(k)
i j
{1,z,z2,z3, f (z),z f (z),z2 f (z),g(z),zg(z)}

1+z/Ry
dz

(16)

The variation of the kinetic energy of the panel can be written as:

K = 1
2

a∫
0

b∫
0

h/2∫
−h/2

ρ(z)
( .
u2

+
.
v2

+
.

w2)(1 + z
Rx

)(
1 + z

Ry

)
dzdydx

= 1
2

a∫
0

b∫
0

((
I0

.
u0 + I2

.
φ

2
xb + K1

.
φ

2
xs + 2I1

.
u0

.
φxb + 2J1

.
u0

.
φxs + 2J2

.
φxb

.
φxs + I0

.
v2

0 + I2
.
φ

2
yb

+K1
.
φ

2
ys + 2I1

.
v0

.
φyb + 2J1

.
v0

.
φys + 2J2

.
φyb

.
φys + I0

( .
w2

b +
.

ws
2 + 2

.
wb

.
ws

)
)dydx

(17)

where:

φxb =

(
u0

Rx
−
∂wb
∂x

)
; φxs = −

∂ws

∂x
; φyb =

(
v0

Ry
−
∂wb
∂y

)
; φys = −

∂ws

∂y
(18)

and ρ(z) is the mass density, and the mass moments of inertia Ii (i = 0, 1, 2) are defined as [30,33]:

Ii = Ii + Ii+1

(
1

Rx
+ 1

Ry

)
+

Ii+2
RxRy

;

{I0, I1, I2, I3} =
N∑

k=1

∫ z+1
zk

ρ(z)
{
1, z, z2, z3

}
dz;

Ji = f (z)Ii−1; K1 = f 2(z)I0

(19)

Substituting the expressions of U and K from Equation (12) and Equation (17) into Equation (11),
and by performing some mathematical manipulations, the equations of motion of the shell panel are
obtained as follows:

0 = −
∫
A



[
∂Nxx
∂x +

∂Nyx
∂y +

Qxb
Rx
− I0

..
u0 − I1

( ..
u0
Rx
−
∂

..
wb
∂x

)
+ J1

∂
..
ws
∂x

]
δu0[

∂Nyy
∂y +

∂Nyx
∂x +

Qyb
Ry
− I0

..
v0 − I1

( ..
v0
Ry
−
∂

..
wb
∂y

)
+ J1

∂
..
ws
∂y

]
δv0[

−
∂Nxx

Rx
−
∂Nyy

Ry
+

∂Qxb
∂x +

∂Qyb
∂y − I0

( ..
wb +

..
ws

)]
δwb[

−
∂Nxx

Rx
−
∂Nyy

Ry
+ ∂Qxs

∂x +
∂Qys
∂y − I0

( ..
wb +

..
ws

)]
δws


dA

+
∫ b

0 [Γx]
a
0dy +

∫ a
0

[
Γy

]b

0
dx

(20)
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where:

Qxb =
∂Mb

xx
∂x +

∂Mb
yx

∂y −

(
I1 +

I2
Rx

)
..
u0 + I2

∂
..
wb
∂x

+ J2
∂

..
ws
∂x

Qyb =
∂Mb

yy
∂y +

∂Mb
xy

∂x −

(
I1 +

I2
Ry

)
..
v0 + I2

∂
..
wb
∂y

+ J2
∂

..
ws
∂y

Qxs =
∂Ms

xx
∂x +

∂Ms
yx

∂y + Qxs −

(
J1 +

J2
Rx

)
..
u0 + J2

∂
..
wb
∂x

+ K1
∂

..
ws
∂x

Qys =
∂Ms

yy
∂y +

∂Ms
xy

∂x + Qys −

(
J1 +

J2
Ry

)
..
v0 + J2

∂
..
wb
∂x

+ K1
∂

..
ws
∂y

(21)

and Γx, Γy are boundary expressions:

Γx = Nxxδu0 + Nxyδv0 + Qxbδwb + Qxsδws + Mb
xxδφ̃xb + Mb

xyδφ̃yb + Ms
xxδφxs + Ms

xyδφys

Γy = Nyyδv0 + Nyxδu0 + Qybδwb + Qysδws + Mb
yyδφ̃yb + Mb

yxδφ̃xb + Ms
yyδφys + Ms

yxδφxs

(22)

in which:

Nxx =
(
Nxx −

Mb
xx

Rx

)
; Nxy =

(
Nxy −

Mb
xy

Ry

)
; Nyy =

(
Nyy −

Mb
yy

Ry

)
; Nyx =

(
Nyx −

Mb
yx

Rx

)
;

φ̃xb = −
∂wb
∂x ; φxs = −

∂ws
∂x ; φ̃yb = −

∂wb
∂y ; φys = −

∂ws
∂y

(23)

By setting the coefficients of the virtual displacements δu0, δv0, δwb, δws to zeros, the governing
equations are obtained as follows:

δu0 : ∂Nxx
∂x +

∂Nyx
∂y +

Qxb
Rx

= I0
..
u0 + I1

( ..
u0
Rx
−
∂

..
wb
∂y

)
− J1

∂
..
ws
∂x

δv0 :
∂Nyy
∂y +

∂Nyx
∂x +

Qyb
Ry

= I0
..
v0 + I1

( ..
v0
Ry
−
∂

..
wb
∂y

)
− J1

∂
..
ws
∂y

δwb : ∂Nxx
Rx

+
∂Nyy

Ry
−
∂Qxb
∂x −

∂Qyb
∂y = −I0

( ..
wb +

..
ws

)
δws : ∂Nxx

Rx
+

∂Nyy
Ry
−
∂Qxs
∂x −

∂Qys
∂y = −I0

( ..
wb +

..
ws

)
(24)

2.5. Solution Procedure

The Navier method is employed to formulate the closed-form solution for vibration problems
of simply supported anti-symmetric cross-ply laminated FG-CNTRC panels. The simply supported
boundary conditions on all four edges can be considered as:

v0 = wb = ws = wb,y = ws,y = Nxx = Mb
xx = Ms

xx = 0 at x = 0 and x = a (25)

u0 = wb = ws = wb,x = ws,x = Nyy = Mb
yy = Ms

yy = 0 at y = 0 and y = b (26)
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These boundary conditions are exactly satisfied by the following double Fourier series forms:

u(x, y, t) =
∞∑

m=1

∞∑
n=1

Umneiωt cosαmx sin βny;

v(x, y, t) =
∞∑

m=1

∞∑
n=1

Vmneiωt sinαmx cos βny;

wb(x, y, t) =
∞∑

m=1

∞∑
n=1

Wbmneiωt sinαmx sin βny;

ws(x, y, t) =
∞∑

m=1

∞∑
n=1

Wsmneiωt sinαmx sin βny.

(27)

where (Umn, Vmn, Wbmn, Wsmn) are unknown coefficients to be determined, ω is the circular frequency
of vibration, and i =

√
−1, αm = mπ/a, βn = nπ/b and m, n denote the number of haft-waves in the

x and y directions, respectively.
Substituting the admissible displacement functions of Equation (27) into the equation of motion,

Equation (20), one obtains the analytical solution in the following matrix form:


s11 s12 s13 s14

s12 s22 s23 s24

s13 s23 s33 s34

s14 s24 s34 s44

−ω2


m11 m12 m13 m14

m12 m22 m23 m24

m13 m23 m33 m34

m14 m24 m34 m44





Umn

Vmn

Wbmn
Wsmn

 =


0
0
0
0

 (28)

where the matrix elements of Equation (28) are given in the Appendix B.

3. Numerical Results and Discussions

In this section, several examples are presented and discussed to verify the accuracy and efficiency
of the proposed theory in free vibration analysis of simply supported FG-CNTRC doubly-curved
panels. Furthermore, the effects of volume fraction of CNTs, distribution type of CNTs, number of
layers, CNT fiber orientation and geometrical parameters on the natural frequencies of panels are also
investigated in detail. The material properties for the matrix and CNT are given in Table 1 [34,35].
Also, the CNT efficiency parameters η j (j = 1,2,3) associated with a given volume fraction V∗CNT are:
η1 = 0.149 and η2 = η3 = 0.934 for the case of V∗CNT = 0.11; η1 = 0.150 and η2 = η3 = 0.941 for the
case of V∗CNT = 0.14; η1 = 0.149 and η2 = η3 = 1.381 for the case of V∗CNT = 0.17.

Table 1. Material properties of carbon nanotube (CNT) and matrix materials.

CNT Matrix

ECNT
11 = 5.6466 TPa Em = 2.1 GPa

ECNT
22 = 7.0800 TPa vm = 0.34

GCNT
12 = 1.9445 TPa ρm = 1150 kg/m3

vCNT
12 = 0.175 -

ρCNT = 1400 kg/m3 -

3.1. Comparison Studies

To verify the reliability and accuracy of the present model, several comparison studies were
carried out with the results of the previous literature [34,35].

Example 1: Free Vibration of the Simply Supported Doubly Curved FG-CNTRC Panels

Free vibration of the simply supported doubly curved single-layered FG-CNTRC panels is further
analyzed for the comparison of the results obtained from the present formulation with the existing
results developed by Pouresmaeeli and Fazelzadeh [34] based on FSDT formulations. The geometrical
dimensions of the panels are taken as a/b = 1 and a/h = 20. Values of material parameters are listed
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in Table 1. From the results presented in Table 2, it is observed that the values of the fundamental
frequency for plates, spherical, cylindrical, and hyperbolic paraboloid panels have excellent agreement
with the available data.

Table 2. Comparison of the non-dimensional frequenciesω = ω
(
a2/h

)√
ρm/Em of the simply supported

doubly curved FG-CNTRC panels.

a/Rx b/Ry V∗CNT
UD FG-V FG-X FG-O

[34] Present [34] Present [34] Present [34] Present

0.5 0.5
0.11 20.238 20.087 18.543 17.917 22.432 22.752 17.140 16.653
0.14 21.655 21.700 19.779 19.184 23.997 24.642 18.267 17.790
0.17 25.051 24.691 22.951 21.848 27.883 28.023 21.212 20.419

0.5 –0.5
0.11 17.106 17.282 14.809 14.617 19.588 20.253 13.364 13.202
0.14 18.626 19.005 16.181 16.065 21.225 22.203 14.610 14.493
0.17 21.095 21.214 18.225 17.875 24.274 24.879 16.389 16.149

0.5 0
0.11 18.126 18.210 16.060 15.698 20.548 21.120 14.553 14.297
0.14 19.628 19.890 17.391 17.065 22.179 23.044 15.766 15.525
0.17 22.380 22.328 19.799 19.111 25.488 25.925 17.903 17.472

0 0
0.11 18.008 18.201 15.701 15.55 20.624 21.332 14.068 13.907
0.14 19.608 20.016 17.147 17.089 22.349 23.391 15.378 15.265
0.17 22.207 22.343 19.315 19.021 25.557 26.208 17.252 17.012

3.2. Parametric Studies

In this section, some new results for free vibration of the anti-symmetric cross-ply laminated
FG-CNTRC doubly curved shell panels are investigated with respect to FG-CNTRC parameters,
curvature, Rx/Ry ratio, aspect a/b ratio, and number of layers. The material properties for the matrix
and CNT are shown in Table 1.

3.2.1. Effect of FG-CNTRC Parameters

To understand the effect of FG-CNTRC parameters on the free vibration response of different
shell panels, non-dimensional frequencies ω of anti-symmetric cross-ply laminated FG-CNTRC doubly
curved shell panels with different CNT distribution, CNT volume fraction, and number of CNT layers
are examined.

It is observed from Table 3, that the FG-X panels have the highest value of frequency, whereas,
the FG-O panels have the lowest one. Therefore, it can be concluded that the type of CNT distribution
has a remarkable influence on the stiffness of the FG-CNTRC shell panels. In detail, the CNTs
distributed close to the top and bottom surfaces of each FG-CNTRC layer are more efficient than those
distributed near the mid-plane of each FG-CNTRC layer in increasing the stiffness of the laminated
FG-CNTRC shell panels. This is compatible with conclusions in previous studies in the literature.
According to the detailed results, the values of ω can be increased by more than 24% with only 6%
increasing CNT volume fraction V∗CNT for any other parameters. Thus, by adjusting a small amount of
CNT volume, the desired stiffness of the FG-CNTRC panels can be achieved. Table 3 also reveals that
the SHP panel has the highest value of ω while the HPR panel has the lowest one. This is because HPR
has both sagging and hogging curvature along the two directions, neutralizing the effect of each other,
while SHP does not. Table 3, once again confirms the accuracy of the present model by comparing the
non-dimensional frequencies of the FG-CNTRC plates with the results of Wang [35].
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Table 3. Non-dimensional frequencies ω of the simply supported FG-CNTRC doubly curved shell
panels (a/b = 1; R/a = 5, a/h = 50).

Shape CNT Distribution

(0/90) (0/90)2 (0/90)4

V*
CNT V*

CNT V*
CNT

0.11 0.14 0.17 0.11 0.14 0.17 0.11 0.14 0.17

CYL

UD 12.854 13.841 15.937 18.658 20.596 23.032 19.829 21.941 24.467
FG-A 11.383 12.181 14.177 18.367 20.295 22.700 19.739 21.856 24.378
FG-V 12.216 12.969 15.137 18.624 20.528 22.998 19.858 21.963 24.516
FG-X 14.442 15.713 17.937 19.084 21.089 23.582 20.062 22.212 24.776
FG-O 11.067 11.720 13.753 18.241 20.121 22.528 19.610 21.694 24.207

SPH

UD 16.540 17.442 20.579 21.334 23.132 26.419 22.364 24.335 27.677
FG-A 15.143 15.902 18.967 20.984 22.786 26.050 22.245 24.232 27.583
FG-V 16.366 17.080 20.371 21.426 23.193 26.560 22.453 24.423 27.823
FG-X 17.812 18.980 22.214 21.722 23.595 26.951 22.587 24.604 28.002
FG-O 15.214 15.845 18.990 20.977 22.723 26.008 22.175 24.123 27.472

HPR

UD 11.295 12.340 13.969 17.583 19.576 21.671 18.806 20.969 23.171
FG-A 10.085 10.900 12.474 17.407 19.374 21.459 18.768 20.928 23.133
FG-V 10.085 10.900 12.474 17.407 19.374 21.459 18.768 20.928 23.133
FG-X 13.057 14.384 16.174 18.023 20.080 22.229 19.042 21.240 23.474
FG-O 9.219 9.907 11.409 17.141 19.075 21.128 18.574 20.708 22.889

PLATE

Present UD 11.353 12.401 14.040 17.696 19.701 21.810 18.943 21.122 23.340
[35] 11.348 12.395 14.035 17.714 19.726 21.831 18.958 21.142 23.358

Present FG-V 10.138 10.956 12.541 17.519 19.498 21.597 18.906 21.081 23.302
[35] 10.056 10.876 12.435 17.495 19.484 21.565 18.883 21.065 23.271

Present FG-X 13.120 14.453 16.253 18.139 20.208 22.372 19.181 21.395 23.646
[35] 13.064 14.396 16.180 17.975 20.032 22.165 18.995 21.193 23.411

Present FG-O 9.270 9.960 11.472 17.251 19.197 21.264 18.710 20.859 23.057
[35] 9.182 9.874 11.367 17.378 19.354 21.421 18.856 21.036 23.238

3.2.2. Effect of Curvature

Two forms of doubly curved shell panels (SPH and HPR) with a/b = 1, a/h = 20,Rx = Ry = R,(0/90)5,
V∗CNT = 0.17 were considered, to study the effect of curvature on the non-dimensional frequencies ω.
The results are shown in the Figure 3a,b. These figures indicate that at the small value of R/a, the SHP
panels have a much higher non-dimensional frequency than HPR panels. The non-dimensional
frequencies of the SHP panels decrease, while those of HPR panels increase with the increase of R/a
ratio from one to a specific value. After this value, the non-dimensional frequencies of both SHP and
HPR panels have approximate values and seem to be unchanged.

Figure 3. Effect of R/a ratio on the frequency parameter ω of FG-CNTRC shell panels. (a/b = 1, a/h =

20,Rx = Ry = R, (0/90)5, V∗CNT = 0.17): (a) SPH panel; (b) HPR panel.
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3.2.3. Effect of Curvature Ratio

The effect of curvature ratio Rx/Ry on non-dimension frequency of the panels is investigated in
this subsection. The geometrical dimensions of the panels are taken as a/b = 1, a/h = 20, Rx/a = 5. It can
be seen from Figure 4a,b, that the non-dimension frequencies of panels decrease with the increase
of curvature ratio from −3 to −1, and increase with the value of curvature ratio bigger than −1 for
different numbers of layers and different CNT volume fractions. Moreover, the values of ω are at
minimum when Rx/Ry = −1 shows that the curvature effect can be suppressed if the shell panels have
both negative and positive curvature.

Figure 4. Effect of Rx/Ry of FG-CNTRC shell panels (a/b = 1, a/h = 20, Rx/a = 5, FG-X): (a) For different
number of layers, V∗CNT = 0.17; (b) for different CNT volume fractions.

3.2.4. Effect of Thickness Ratio

The SPH shell panel was chosen to study the effect of thickness on the free vibration response of
the FG-CNTRC doubly curved shell panel. For this purpose, another non-dimensional frequency is
defined as [34]:

ω̂ = ωa

√
ρm

Em (29)

PCF =

(
ω̂FG − ω̂UD

ω̂UD

)
× 100 (30)

The effect of thickness ratio, h/a, on the non-dimensional frequency of the FG-CNTRC panels is
shown in Figure 5. This figure indicates that with all types of CNT distribution, the panels become
stiffer with the increase of the thickness ratio, as a result, the non-dimensional frequency of the
FG-CNTRC panels increase. Besides, the influence of the thickness ratio, h/a, on the percentage change
of frequency (PCF) of the SHP panel is depicted in Figure 5b. It is observed that FG-X panels show
positive effectiveness while other FG-CNTRC panels show the negative effects concerning uniformly
distribution (UD) panels. The highest percentage change of frequency of an FG-X panel and FG-O
panel are about 14.5% and −15.2%, respectively.
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Figure 5. Effect of h/a ratio on free vibration of FG-CNTRC shell panels ((a/b = 1; Rx = Ry = R;

V∗CNT = 0.17; (0/90)): (a) For the frequency parameter ω̂ = ωa
√
ρm

Em ; (b) for the (PCF).

3.2.5. Effect of Aspect Ratio

Figure 6a,b show the effects of the aspect ratio (a/b) on the vibration of FG-CNTRC. Here, we take
a/b = 1; Rx = Ry = R; R/a = 5; V∗CNT = 0.17 and (0/90).

Figure 6. Effect of aspect ratio (a/b) on free vibration of FG-CNTRC shell panels (a/b = 1; Rx = Ry = R;

V∗CNT = 0.17; (0/90)): (a) For the frequency parameter ω̂ = ωa
√
ρm

Em ; (b) For the percentage change of
frequency (PCF).

Figure 6a reveals that the non-dimensional frequencies of all four types of doubly curved panels
decrease uniformly by increasing aspect ratio. In other words, the stiffness of doubly curved panels
will be reduced as the aspect ratio increases. Figure 6a states that the PCF of the FG-CNTRC panels
remains unchanged with the increase of aspect ratio.

3.2.6. Effect of Number of Layers

The influence of number of layers (n is a couple of layers (0/90)) on ω̂, and PCF are depicted in
Figure 7a,b, respectively. Here, the geometrical dimensions of the panels are taken as a/b = 1, a/h = 20,
Rx = Ry = R, and V∗CNT = 0.17, FG-X, (0/90)n. As the Figures show, with a fixed value of total thickness,
the non-dimensional frequencies and the percentage change of frequency of laminated FG-CNTRC
panels are strongly affected by the number of layers, changing from one layer to two layers. However,
these two dimensionless parameters vary very slightly for the number of layers greater than three.
This is compatible with the investigations of Reddy [31], for conventional fiber reinforced composites.
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Figure 7. Effect of number of layers (n) on free vibration of FG-CNTRC shell panels (a/b = 1, Rx = Ry = R;

V∗CNT = 0.17, (0/90)n: (a) For the frequency parameter ω̂ = ωa
√
ρm

Em ; (b) for the percentage change of
frequency PCF.

3.2.7. Effect of Different Wave Numbers

Table 4 listed non-dimensional frequencies for two-layered (0/90) FG-CNTRC doubly curved shell
panels (a/b = 1; R/a = 5, a/h = 50, FG-X,V∗CNT = 0.17) for different wave numbers. It can be seen that at the
small value of wave numbers (n, m) the SPH panels have highest non-dimensional frequencies while
the HPR panels have lowest ones. However, it also can be seen that the non-dimensional frequencies
of all three types of doubly curved panels will approximately have more wave numbers.

Table 4. Non-dimensional frequencies ω for two-layered (0/90) FG-CNTRC doubly curved shell panels
for different wave numbers (a/b = 1; R/a = 5, a/h = 50, , FG-X, V∗CNT = 0.17).

Shape n m = 1 m = 2 m = 3 m = 4 m = 5 m = 6

CYL

1 17.937 48.140 99.846 169.706 254.950 352.930
2 46.027 64.594 109.402 176.466 260.683 358.380
3 97.820 109.032 141.357 198.901 277.607 372.340
4 168.004 176.095 198.835 243.742 311.861 399.381
5 253.606 260.401 277.580 311.892 367.569 444.182
6 351.923 358.209 372.384 399.478 444.253 508.835

SPH

1 22.214 49.271 100.122 169.593 254.585 352.371
2 49.472 65.771 109.763 176.410 260.356 357.845
3 100.573 109.960 141.685 198.853 277.285 371.804
4 170.323 176.802 199.065 243.665 311.532 398.838
5 255.596 260.940 277.698 311.759 367.219 443.632
6 353.644 358.612 372.397 399.275 443.867 508.271

HPR

1 16.174 47.141 99.497 169.711 255.202 353.378
2 47.141 64.179 109.145 176.475 260.924 358.816
3 99.497 109.145 141.314 198.990 277.883 372.799
4 169.711 176.475 198.990 243.935 312.190 399.872
5 255.202 260.924 277.883 312.190 367.960 444.710
6 353.378 358.816 372.799 399.872 444.710 509.403

Figures 8–10 depict the first six mode shapes of the simply supported laminated FG-CNTRC CYL,
SPH and HPR shell panels, respectively. Geometric characteristics of the panels are a/b = 1, R/a = 5 and
a/h = 50. Type of CNT distribution is FG-X and volume faction of CNT is V∗CNT = 0.17. It can be noticed
from these Figures, that in CYL panels, mode (m = 2, n = 1) is higher than mode (m = 1, n = 2), while in
SPH and HPR panels, mode (m = 1, n = 2) and mode (m = 2, n =1) are the same order. This is because
the CYL panel only has the curvature in x direction while SPH and HPR panels have the curvature
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in both x and y directions. These mode shapes can help to understand vibration characteristics of
laminated FG-CNTRC doubly curved shell panels.

Figure 8. The first six mode shapes of simply supported laminated FG-CNTRC CYL panels.
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Figure 9. The first six mode shapes of simply supported laminated FG-CNTRC SPH panels.
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Figure 10. The first six mode shapes of simply supported laminated FG-CNTRC HPR panels.

4. Conclusions

In this paper, an analytical solution based on a new four-variable refined shell theory for free
vibration analysis of the laminated FG-CNTRC doubly curved shell panels was developed. The accuracy
and efficiency of the present model are validated through a review of comparison studies. The influences
of several parameters such as FG-CNTRC parameters, curvature, curvature ratio, thickness ratio, aspect
ratio and the number of layers on free vibration responses of the panels are explored. The results
revealed that the shell panels become stiffer with increasing curvature, conversely, the stiffness of the
panels is reduced as the aspect ratio increases. FG-X CNTRC panels have the highest frequency, while
FG-O CNTRC panels have the smallest frequency regarding all inlet studied parameters.
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The present theory is accurate and efficient in solving free vibration behaviours of doubly
curved laminated FG-CNT reinforced composite panels and may be useful in the study of similar
composite structures.

Author Contributions: Formal analysis, Software, V.V.T.; Writing-original draft, Investigation, T.H.Q.;
Supervision-editing, T.M.T.

Funding: This research received no external funding.

Conflicts of Interest: The authors declared no potential conflicts of interest with respect to the research, authorship,
and/or publication of this article.

Appendix A

Detailed steps to construct the new shape function:
The transverse strains associated with the displacement field in Equation (1) are:

γxz = 1
1+z/Rx

[
∂w
∂x + ∂u

∂z −
u0
Rx

]
= 1

1+z/Rx

[
∂wb
∂x + ∂ws

∂x + u0
Rx
−
∂wb
∂x − f ′ (z) ∂ws

∂x −
u0
Rx

]
= 1

1+z/Rx

[
(1− f ′ (z)) ∂ws

∂x

]
γyz = 1

1+z/Ry

[
∂w
∂y + ∂v

∂z −
v0
Ry

]
= 1

1+z/Ry

[
∂wb
∂y + ∂ws

∂y + v0
Ry
−
∂wb
∂y − f ′ (z) ∂ws

∂y −
v0
Ry

]
= 1

1+z/Ry

[
(1− f ′ (z)) ∂ws

∂y

] (A1)

For shells under bending, the transverse shear stresses σxz, σyz must be vanished at the top and
bottom surfaces. These conditions lead to the requirement that the corresponding transverse strains on
these surfaces have to be zero. From γxz

(
x, y,± h

2

)
= γyz

(
x, y,± h

2

)
= 0, we obtain:

γxz =
1

1 + z/Rx

[
(1− f ′ (z))

∂ws

∂x

]
= 0 at z = ±

h
2

(A2)

γyz =
1

1 + z/Ry

[
(1− f ′ (z))

∂ws

∂y

]
= 0 at z = ±

h
2

(A3)

From Equations (A2) and (A3), we have:

f ′(z)= 1 at z = ±
h
2

(A4)

Function f (z) satisfies the condition (5) can be selected as a polynomial, trigonometric,
and exponential, . . . function. In our study, we chose f (z) as a cubic polynomial: f (z) = az + b

h2 z3, thus:

f ′ (z) = a +
3b
h2 z2 = 1 (A5)

Some authors have chosen the value of the pair a, b to satisfy Equation (A5). In this study, we
chose: a = −1/8, b = 3/2. Thus:

f (z) = −
1
8

z +
3
2

z3

h2 , f ′(z) =
(
−

1
8
+

3.3
2

z2

h2

)∣∣∣∣z=± h
2
= 1 (A6)

Appendix B

Matrix elements of Equation (25):

s11 = −

(
A11 + 2

B11

Rx
+

D11

R2
x

)
αm

2
−

(
Â66 + 2

B̂66

Rx
+

D̂66

R2
x

)
βn

2 (A7)
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s12 = −

(
A12 + A66 + (B12 + B66)

(
1
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+

1
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+

1
RxRy
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)
βnαm (A8)

s14 =
(
B

s
11 +

D
s
11

Rx

)
αm

3 +
((

Bs
12 + Bs

66 + B̂s
66 +

Ds
66

Rx
+

D̂s
66

Rx
+

Ds
12

Rx

)
βn

2 + A11
Rx

+ A12
Ry

+ B11
R2

x
+ B12

RxRy

)
αm (A9)

s22 = −

A66 + 2
B66

Ry
+

D66

R2
y

αm
2
−

Â22 + 2
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