Designed Conducting Polymer Composites That Facilitate Long-Lived, Light-Driven Oxygen and Hydrogen Evolution from Water in a Photoelectrochemical Concentration Cell (PECC)
Abstract
:1. Introduction
2. Results
2.1. The Photoelectrochemical Concentration Cell (PECC) of This Work
2.2. Testing of the PECC
2.3. Physical and Electrical Properties of the Conductive Polyacrylamide CsCl Hydrogel Separator
3. Discussion and Conclusions
4. Materials and Methods
4.1. Synthesis of Poly(3,4-ethylenedioxidethiophene) (PEDOT)/Nano-Ni/Reduced Graphene Oxide (rGO) and Electrochemical Testing
4.2. Preparation of Polyacrylamide Hydrogel
4.3. Polyacrylamide Hydrogel Characterization
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jensen, J.O.; Bandur, V.; Bjerrun, N.J.; Jensen, S.H.; Ebbesen, S.; Mogensen, M.; Trophoj, N.; Yde, L. Pre-Investigation of Water Electrolysis; Publication PSO-F&U 2006-1-6287; RISO and the Danish Technical University: Roskilde, Denmark, 2008; references therein. [Google Scholar]
- Bak, T.; Nowotny, J.; Rekas, M.; Sorrell, C.C. Photo-electrochemical hydrogen generation from water using solar energy materials-related aspects. Int. J. Hydrog. Energy 2002, 27, 991–1022. [Google Scholar] [CrossRef]
- Nocera, D.G. The artificial leaf. Acc. Chem. Res. 2012, 45, 767–776. [Google Scholar] [CrossRef] [PubMed]
- Selli, E.; Chiarello, G.L.; Quartarone, E.; Mustarelli, P.; Rossetti, I.; Forni, L. A photocatalytic water splitting device for separate hydrogen and oxygen evolution. Chem. Commun. 2007, 5022–5024. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, A.; Korin, E.; Halevy, S.; Bettelheim, A. Chemical bias of electrochemical and photoelectrochemical water splitting using a hydrogel separator. Electrochem. Commun. 2015, 60, 97–99. [Google Scholar] [CrossRef]
- Antoniadou, M.; Bouras, P.; Strataki, N.; Lianos, P. Hydrogen and electricity generation by photoelectrochemical decomposition of ethanol over nanocrystalline titania. Int. J. Hydrog. Energy 2008, 33, 5045–5051. [Google Scholar] [CrossRef]
- Hernandez-Pagan, E.A.; Vargas-Barbosa, N.M.; Wang, T.; Zhao, Y.; Smotkin, E.S.; Mallouk, T.E. Resistance and polarization losses in aqueous buffer-membrane electrolytes for water-splitting photoelectrochemical cells. Energy Environ. Sci. 2012, 5, 7582–7589. [Google Scholar] [CrossRef]
- Berger, A.; Segalman, R.A.; Newman, J. Material requirements for membrane separators in a water-splitting photoelectrochemical cell. Energy Environ. Sci. 2014, 7, 1468–1476. [Google Scholar] [CrossRef]
- Walczak, K.; Chen, Y.; Karp, C.; Beeman Jeffrey, W.; Shaner, M.; Spurgeon, J.; Sharp Ian, D.; Amashukeli, X.; West, W.; Jin, J.; et al. Modeling, simulation, and fabrication of a fully integrated, acid-stable, scalable solar-driven water-splitting system. ChemSusChem 2015, 8, 544–551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alsultan, M.; Balakrishnan, S.; Choi, J.; Jalili, R.; Tiwari, P.; Wagner, P.; Swiegers, G.F. Synergistic amplification of water oxidation catalysis on Pt by a thin-film conducting polymer composite. ACS Appl. Energy Mater. 2018, 1, 4235–4246. [Google Scholar] [CrossRef]
- Alsultan, M.; Choi, J.; Jalili, R.; Wagner, P.; Swiegers, G.F. Synergistic amplification of catalytic hydrogen generation by a thin-film conducting polymer composite. Catal. Sci. Technol. 2018, 8, 4169–4179. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Lu, J.J.; Yang, C.H.; Yang, J.H.; Zhou, J.; Chen, Y.M.; Suo, Z. Highly stretchable and transparent ionogels as nonvolatile conductors for dielectric elastomer transducers. ACS Appl. Mater. Interfaces 2014, 6, 7840–7845. [Google Scholar] [CrossRef] [PubMed]
- Bhadani, R.; Mitra Uttam, K. Synthesis and studies on water swelling behaviour of polyacrylamide hydrogels. Macromol. Symp. 2016, 369, 30–34. [Google Scholar] [CrossRef]
- Gupta, N.V.; Shivakumar, H.G. Investigation of swelling behavior and mechanical properties of a pH-sensitive superporous hydrogel composite. Iran. J. Pharm. Res. IJPR 2012, 11, 481–493. [Google Scholar]
- Ahmed, E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015, 6, 105–121. [Google Scholar] [CrossRef] [Green Version]
- Ullah, F.; Othman, M.B.H.; Javed, F.; Ahmad, Z.; Akil, H.M. Classification, processing and application of hydrogels: A review. Mater. Sci. Eng. C 2015, 57, 414–433. [Google Scholar] [CrossRef]
- Sun, J.Y.; Keplinger, C.; Whitesides George, M.; Suo, Z. Ionic skin. Adv. Mater. 2014, 26, 7608–7614. [Google Scholar] [CrossRef]
- Bai, Y.; Chen, B.; Xiang, F.; Zhou, J.; Wang, H.; Suo, Z. Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt. Appl. Phys. Lett. 2014, 105, 151903–151908. [Google Scholar] [CrossRef]
- Warren, H.; Gately Reece, D.; O’Brien, P.; Gorkin, R., III; in het Panhuis, M. Electrical conductivity, impedance, and percolation behavior of carbon nanofiber and carbon nanotube containing gellan gum hydrogels. J. Polym.Sci. Part B Polym. Phys. 2014, 52, 864–871. [Google Scholar] [CrossRef] [Green Version]
Parameter | Initial | After 14 h |
---|---|---|
Conductivity (mS/cm) | 265 ± 21 | 310 ± 31 |
Water content (%) | 65 | 95 |
pH | 2.5 | 3.1 |
Parameter | Values |
---|---|
Tensile modulus | 18 ± 3 kPa |
Tensile strength | 26 ± 7 kPa |
Extension to failure | 198% ± 19 % |
Parameter | Values |
---|---|
Compression modulus | 24 ± 2 kPa |
Ultimate compression | 824 ± 31 kPa |
Strain to failure | 91% ± 8% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsultan, M.; Zainulabdeen, K.; Wagner, P.; Swiegers, G.F.; Warren, H. Designed Conducting Polymer Composites That Facilitate Long-Lived, Light-Driven Oxygen and Hydrogen Evolution from Water in a Photoelectrochemical Concentration Cell (PECC). J. Compos. Sci. 2019, 3, 108. https://doi.org/10.3390/jcs3040108
Alsultan M, Zainulabdeen K, Wagner P, Swiegers GF, Warren H. Designed Conducting Polymer Composites That Facilitate Long-Lived, Light-Driven Oxygen and Hydrogen Evolution from Water in a Photoelectrochemical Concentration Cell (PECC). Journal of Composites Science. 2019; 3(4):108. https://doi.org/10.3390/jcs3040108
Chicago/Turabian StyleAlsultan, Mohammed, Khalid Zainulabdeen, Pawel Wagner, Gerhard F. Swiegers, and Holly Warren. 2019. "Designed Conducting Polymer Composites That Facilitate Long-Lived, Light-Driven Oxygen and Hydrogen Evolution from Water in a Photoelectrochemical Concentration Cell (PECC)" Journal of Composites Science 3, no. 4: 108. https://doi.org/10.3390/jcs3040108
APA StyleAlsultan, M., Zainulabdeen, K., Wagner, P., Swiegers, G. F., & Warren, H. (2019). Designed Conducting Polymer Composites That Facilitate Long-Lived, Light-Driven Oxygen and Hydrogen Evolution from Water in a Photoelectrochemical Concentration Cell (PECC). Journal of Composites Science, 3(4), 108. https://doi.org/10.3390/jcs3040108