Boundary Characteristic Bernstein Polynomials Based Solution for Free Vibration of Euler Nanobeams
Abstract
:1. Introduction
2. Theoretical Formulation
3. Solution Methodology
Bernstein Based Rayleigh-Ritz Method
4. Method of Solution Using Orthogonal Bernstein Polynomials (OBPs)
5. Convergence Theorem
6. Numerical Results and Discussions
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Peng, H.B.; Chang, C.W.; Aloni, S.; Yuzvinsky, T.D.; Zettl, A. Ultrahigh frequency nanotube resonators. Phys. Rev. Lett. 2006, 97, 087203. [Google Scholar] [CrossRef] [PubMed]
- Dubey, A.; Sharma, G.; Mavroidis, C.; Tomassone, M.S.; Nikitczuk, K.; Yarmush, M.L. Computational studies of viral protein nano-actuators. J. Comput. Theor. Nanosci. 2004, 1, 18–28. [Google Scholar] [CrossRef]
- Ruud, J.A.; Jervis, T.R.; Spaepan, F. Nanoindentation of Ag/Nimultilayered thin films. J. Appl. Phys. 1994, 75, 4969. [Google Scholar] [CrossRef]
- Wang, L.F.; Hu, H.Y. Flexural wave propagation in single-walled carbon nanotubes. Phys. Rev. B 2005, 71, 195412. [Google Scholar] [CrossRef]
- Eringen, A.C. Nonlocal polar elastic continua. Int. J. Eng. Sci. 1972, 10, 1–16. [Google Scholar] [CrossRef]
- Reddy, J.N. Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 2007, 45, 288–307. [Google Scholar] [CrossRef]
- Wang, C.M.; Kitipornchai, S.; Lim, C.W.; Eisenberger, M. Beambending solution based on nonlocal Timoshenko beam theory. J. Eng. Mech. ASCE 2008, 134, 475–481. [Google Scholar] [CrossRef]
- Wang, Q. Wave propagation in carbon nanotubes via nonlocal continuum mechanics. J. Appl. Phys. 2005, 98, 124301. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Liu, G.R.; Xie, X.Y. Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity. Phys. Rev. B 2005, 71, 195404. [Google Scholar] [CrossRef]
- Aydogdu, M. A general nonlocal beam theory: Its application to nanobeam bending, buckling and vibration. Low Dimens. Syst. Nanostruct. 2009, 41, 1651–1655. [Google Scholar] [CrossRef]
- Wang, C.M.; Zhang, Y.Y.; He, X.Q. Vibration of nonlocal Timoshenko beams. Inst. Phys. 2007, 18, 105401. [Google Scholar] [CrossRef]
- Phadikar, J.K.; Pradhan, S.C. Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates. Comput. Mater. Sci. 2010, 49, 492–499. [Google Scholar] [CrossRef]
- Eltaher, M.A.; Emam, S.A.; Mahmoud, F.F. Free vibration analysis of functionally graded size-dependent nanobeams. Appl. Math. Comput. 2012, 218, 7406–7420. [Google Scholar] [CrossRef]
- Mohammadi, B.; Ghannadpour, S.A.M. Energy approach vibration analysis of nonlocal Timoshenko beam theory. Procedia Eng. 2011, 10, 1766–1771. [Google Scholar] [CrossRef]
- Roque, C.M.C.; Ferreira, A.J.M.; Reddy, J.N. Analysis of Timoshenko nanobeams with a nonlocal formulation and meshless method. Int. J. Eng. Sci. 2011, 49, 976–984. [Google Scholar] [CrossRef]
- Pradhan, S.C.; Murmu, T. Application of nonlocal elasticity and DQM in the flapwise bending vibration of rotating nanocantilever. Physica E Low Dimens. Syst. Nanostruct. 2010, 42, 1944–1949. [Google Scholar] [CrossRef]
- Jena, S.K.; Chakerverty, S. Free vibration analysis of Euler–Bernoulli Nanobeam using differential transform method. Int. J. Comput. Mater. Sci. Eng. 2018, 7, 1850020. [Google Scholar] [CrossRef]
- Behera, L.; Chakraverty, S. Free vibration of Euler and Timoshenko nanobeams using boundary characteristic orthogonal polynomial. Appl. Nanosci. 2014, 4, 347–358. [Google Scholar] [CrossRef]
- Singh, B.; Chakraverty, S. Use of characteristic orthogonal polynomials in two dimensions for transverse vibration of elliptic and circular plates with variable thickness. J. Sound Vib. 1994, 173, 289–299. [Google Scholar] [CrossRef]
- Behera, L.; Chakraverty, S. Static analysis of nanobeams using the Rayleigh-Ritz method. J. Mech. Mater. Struct. 2017, 12, 603–616. [Google Scholar] [CrossRef]
- Chakraverty, S.; Behera, L. Static and Dynamic Problems of Nanobeams and Nanoplates, 1st ed.; World Scientific Publishing Co.: Singapore, 2016. [Google Scholar]
- Chakraverty, S. Vibration of Plates; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Fernández-Sáez, J.; Zaera, R.; Loya, J.A.; Reddy, J.N. Bending of Euler-Bernoulli beams using Eringen’s integral formulation: A paradox resolved. Int. J. Eng. Sci. 2016, 99, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Joy, K.I. Bernstein Polynomials, On-Line Geometric Modeling Notes; Computer Science Department, University of California, Davis: Davis, CA, USA, 2000. [Google Scholar]
- Civalek, O.; Akgoz, B. Free vibration analysis of microtubules as cytoskeleton components: Nonlocal Euler–Bernoulli beam modeling. Sci. Iran. Trans. B Mech. Eng. 2010, 17, 367–375. [Google Scholar]
N | First | Second | Third |
---|---|---|---|
3 | 2.302557 | 3.847474 | 5.058655 |
4 | 2.302557 | 3.466762 | 5.058655 |
5 | 2.302231 | 3.466762 | 4.323108 |
6 | 2.302231 | 3.460430 | 4.323108 |
7 | 2.302231 | 3.460430 | 4.294516 |
8 | 2.302231 | 3.460401 | 4.294516 |
9 | 2.302231 | 3.460401 | 4.294516 |
10 | 2.302231 | 3.460401 | 4.294516 |
Frequency Parameters | First | Second | Third | |||
---|---|---|---|---|---|---|
N | Orthogonal | Simple | Orthogonal | Simple | Orthogonal | Simple |
3 | 2.3026 | 2.3026 | 3.8475 | 3.8474 | 5.0587 | 5.0586 |
4 | 2.3026 | 2.3026 | 3.4668 | 3.4668 | 5.0587 | 5.0586 |
5 | 2.3022 | 2.3022 | 3.4668 | 3.4668 | 4.3231 | 4.3231 |
6 | 2.3022 | 2.3022 | 3.4604 | 3.4604 | 4.3231 | 4.3231 |
7 | 2.3022 | 2.3022 | 3.4604 | 3.4604 | 4.2945 | 4.2945 |
8 | 2.3022 | 2.3022 | 3.4604 | 3.4604 | 4.2945 | 4.2945 |
9 | 2.3022 | 2.3022 | 3.4604 | 3.4604 | 4.2941 | 4.2941 |
10 | 2.3022 | 2.3022 | 3.4604 | 3.4604 | 4.2941 | 4.2941 |
Frequency Parameters | First | Second | Third | |||
---|---|---|---|---|---|---|
N | Reference [18] | Present | [18] | Present | [18] | Present |
3 | 2.3026 | 2.3026 | 3.8475 | 3.8474 | 5.0587 | 5.0586 |
4 | 2.3026 | 2.3026 | 3.4668 | 3.4668 | 5.0587 | 5.0586 |
5 | 2.3022 | 2.3022 | 3.4668 | 3.4668 | 4.3231 | 4.3231 |
6 | 2.3022 | 2.3022 | 3.4604 | 3.4604 | 4.3231 | 4.3231 |
7 | 2.3022 | 2.3022 | 3.4604 | 3.4604 | 4.2945 | 4.2945 |
8 | 2.3022 | 2.3022 | 3.4604 | 3.4604 | 4.2945 | 4.2945 |
9 | 2.3022 | 2.3022 | 3.4604 | 3.4604 | 4.2941 | 4.2941 |
10 | 2.3022 | 2.3022 | 3.4604 | 3.4604 | 4.2941 | 4.2941 |
N | First | Second | Third |
---|---|---|---|
3 | 2.3026 | 3.8475 | 5.0587 |
4 | 2.3026 | 3.4668 | 5.0587 |
5 | 2.3022 | 3.4668 | 4.3231 |
6 | 2.3022 | 3.4604 | 4.3231 |
7 | 2.3022 | 3.4604 | 4.2945 |
8 | 2.3022 | 3.4604 | 4.2945 |
9 | 2.3022 | 3.4604 | 4.2945 |
10 | 2.3022 | 3.4604 | 4.2941 |
11 | 2.3022 | 3.4604 | 4.2941 |
Frequency Parameter | α = 0 | α = 0.1 | α = 0.3 | α = 0.5 | α = 0.7 | |||||
---|---|---|---|---|---|---|---|---|---|---|
OBPs | Reference [11] | OBPs | [11] | OBPs | [11] | OBPs | [11] | OBPs | [11] | OBPs |
Simply Supported-Simply Supported (S-S) | ||||||||||
First | 3.1416 | 3.1416 | 3.0685 | 3.0685 | 2.6800 | 2.6800 | 2.3022 | 2.3022 | 2.0212 | 2.0212 |
Second | 6.2832 | 6.2832 | 5.7817 | 5.7817 | 4.3013 | 4.3013 | 3.4604 | 3.4604 | 2.9585 | 2.9585 |
Third | 9.4248 | 9.4248 | 8.0400 | 8.0400 | 5.4423 | 5.4423 | 4.2941 | 4.2941 | 3.6486 | 3.6486 |
Fourth | 12.566 | 12.566 | 9.9162 | 9.9162 | 6.3630 | 6.3630 | 4.9820 | 4.9820 | 4.2234 | 4.2234 |
Clamped-Simply Supported (C-S) | ||||||||||
First | 3.9226 | 3.9226 | 3.8209 | 3.8209 | 3.2828 | 3.2828 | 2.7899 | 2.7899 | 2.4364 | 2.4364 |
Second | 7.0686 | 7.0686 | 6.4649 | 6.4649 | 4.7668 | 4.7668 | 3.8325 | 3.8325 | 3.2776 | 3.2776 |
Third | 10.210 | 10.210 | 8.6517 | 8.6517 | 5.8371 | 5.8371 | 4.6105 | 4.6105 | 3.9201 | 3.9201 |
Fourth | 13.252 | 13.252 | 10.469 | 10.469 | 6.7145 | 6.7145 | 5.2633 | 5.2633 | 4.4645 | 4.4645 |
Clamped-Clamped (C-C) | ||||||||||
First | 4.7300 | 4.7300 | 4.5945 | 4.5945 | 3.9184 | 3.9184 | 3.3153 | 3.3153 | 2.8893 | 2.8893 |
Second | 7.8532 | 7.8532 | 7.1402 | 7.1402 | 5.1963 | 5.1963 | 4.1561 | 4.1561 | 3.5462 | 3.5462 |
Third | 10.996 | 10.996 | 9.2583 | 9.2583 | 6.2317 | 6.2317 | 4.9328 | 4.9328 | 4.1996 | 4.1996 |
Fourth | 14.137 | 14.137 | 11.016 | 11.016 | 7.0482 | 7.0482 | 5.5213 | 5.5213 | 4.6817 | 4.6817 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karmakar, S.; Chakraverty, S. Boundary Characteristic Bernstein Polynomials Based Solution for Free Vibration of Euler Nanobeams. J. Compos. Sci. 2019, 3, 99. https://doi.org/10.3390/jcs3040099
Karmakar S, Chakraverty S. Boundary Characteristic Bernstein Polynomials Based Solution for Free Vibration of Euler Nanobeams. Journal of Composites Science. 2019; 3(4):99. https://doi.org/10.3390/jcs3040099
Chicago/Turabian StyleKarmakar, Somnath, and Snehashish Chakraverty. 2019. "Boundary Characteristic Bernstein Polynomials Based Solution for Free Vibration of Euler Nanobeams" Journal of Composites Science 3, no. 4: 99. https://doi.org/10.3390/jcs3040099
APA StyleKarmakar, S., & Chakraverty, S. (2019). Boundary Characteristic Bernstein Polynomials Based Solution for Free Vibration of Euler Nanobeams. Journal of Composites Science, 3(4), 99. https://doi.org/10.3390/jcs3040099