Supplementary Materials: Preparation of Multicomponent Biocomposites and Characterization of their Physicochemical and Mechanical Properties

Yuriy A. Anisimov ¹, Duncan E. Cree ^{2,*} and Lee D. Wilson ^{1,*}

¹ Department of Chemistry, University of Saskatchewan, Saskatoon, SK. S7N 5C9, Canada; iaa365@mail.usask.ca

² Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK. S7N 5A9, Canada

* Correspondence: duncan.cree@usask.ca (D.E.C.); lee.wilson@usask.ca (L.D.W.); Tel.: +1-306-966-3244 (D.E.C.); +1-

306-966-2961 (L.D.W.)

Abbreviation	Compound	CHT, wt. %	PANI, wt. %	PVA, wt. %
CHT	chitosan	100	0	0
PANI	polyaniline	0	100	0
PVA	polyvinyl alcohol	0	0	100
APS	ammonium persulfate	po	olymerization ir	itiator
CHP25	binary composite	25	75	0
CHP50	binary composite	50	50	0
CHP75	binary composite	75	25	0
CHP25-PVA*	ternary composite	25	75	70**
CHP50-PVA	ternary composite	50	50	70**
CHP75-PVA	ternary composite	75	25	70**
CHP25-PVA50	ternary composite	25	75	50***
CHP50-PVA50	ternary composite	50	50	50***
CHP75-PVA50	ternary composite	75	25	50***
MB	methylene blue	dye for adsorption study		
FL	fluorescein	dye for adsorption study		

Table S1. List of shorthand notation used in this study.

*CHP##-PVA is denoted as CHP##-PVA70, in order to highlight the content of PVA; **70% PVA and 30% CHP; ***50% PVA and 50% CHP; Acid-doped samples were denoted by the mark "doped" in this work

Figure S1. Numbering assignment scheme of chitosan ¹³carbon atoms [1].

Wavenumber (cm ⁻¹)	Assignment	Polymer Material
3259-3276 (3266)*	Hydrogen bonding N–H stretching	PANI
2937-2945 (2946)*	C-H from the alkyl groups	PVA
2907-2910 (2917)*	C–H symmetric stretching	CHT
1660 (1655)*	C=O stretching of amide	CHT
1588 (1586)*	Quinoid (Q) ring stretching	PANI
1545 (1543)*	N–H bending of amide	CHT
1495-1500 (1511)*	Benzenoid (B) ring stretching	PANI
1443-1446 (1445)*	C=C stretching of aromatic ring/N=N stretching	PANI
1428 (1427)*	stretching and bending vibrations of –CH2	CHT
1417 (1413)*	Phenazine ring stretching	PANI
1376-1378 (1378)*	C-N stretching in QBQ units	PANI
1316 (1315)*	stretching and bending vibrations of -OH	CHT
1303-1308 (1302)*	v(C-N) of secondary aromatic amine	PANI
1236-1239 (1240)*	v(C–N) BBB unit	PANI
1164-1166 (1160)*	B–NH–B/δ(C–H)	PANI
1139-1141 (1143)*	C–O (crystallinity)	PVA
1069-1086 (1061)*	C–O stretching	PVA
1034 (1026)*	C–O stretching	CHT
827-835 (827)*	γ (C–H) (1,4-disubstituted ring)/Q ring deformation	PANI

Table S2. FTIR bands of PANI-CHT-PVA composites.

*Literature values obtained from Ref. [2-5]

Figure S2. Fitting lines for (**a**) CHP25-PVA, (**b**) CHP50-PVA and (**c**) CHP75-PVA MB equilibrium uptake according to the various isotherm models. The error bars were determined using OriginLab 2019 software (see Table S3).

Figure S3. Thermogravimetry profiles of pristine components – PANI, CHT and PVA.

	Model Parameters	Sips	Langmuir	Freundlich	
Sample	Equation	$y = \frac{q(kx)^n}{1 + (kx)^n}$	$y = \frac{qkx}{1+kx}$	$y = kx^{\frac{1}{n}}$	
	Plot	$q_e = f(C_e)$	$q_e = f(C_e)$	$q_e = f(C_e)$	
	q	19.112 ± 6.271	9.6414 ± 0.0302	_	
	k	0.38222 ± 0.17865	1.2839 ± 0.0155	5.2642 ± 0.0179	
	n	0.49157 ± 0.07528	—	3.0656 ± 0.0286	
CHP25-PVA	Reduced Chi-Sqr	0.05777	0.07961	0.14234	
	R-Square (COD)	0.98829	0.96879	0.94544	
	Adj. R-Square	0.98633	0.96876	0.94538	
	q	37.785 ± 4.132	18.396 ± 0.690	_	
	k	0.44359 ± 0.07228	1.9719 ± 0.3190	11.585 ± 0.036	
	n	0.42989 ± 0.02335	_	3.7293 ± 0.0392	
СНР50-РУА	Reduced Chi-Sqr	0.03039	0.95926	0.63602	
	R-Square (COD)	0.99846	0.94718	0.92940	
	Adj. R-Square	0.99820	0.94312	0.92933	
	q	51.542 ± 6.174	24.413 ± 0.870	_	
CHF/3-FVA	k	0.51174 ± 0.09540	3.0945 ± 0.5700	17.358 ± 0.049	

Table S3. Error bars for the adsorption experiments shown in Figure S2.

n	0.36176 ± 0.02254	_	4.6487 ± 0.0571
Reduced Chi-Sqr	0.07016	2.1091	1.2815
R-Square (COD)	0.99798	0.93407	0.90318
Adj. R-Square	0.99764	0.92900	0.90308

Table S4. Mean densities of polymer composite materials based on geometric volume determination* of the film**.

Sample	Experimental Density, g/cm ³	Theoretical Density***, g/cm ³
CHP25-PVA	1.03 ± 0.03	1.20
CHP50-PVA	0.83 ± 0.06	1.14
CHP75-PVA	0.64 ± 0.03	1.08

*Geometric volume determination was conducted by digital caliper with the systematic error ±0.0025 cm. However, the random errors of the experiment are nearly 10-fold higher and therefore the instrumental error could be neglected. Sample weights were measured with an analytical balance with ±0.00001 g precision. Therefore, the error contribution to the overall density is negligibly small. **This method does not account for the porosity of samples directly; however, data was averaged over 15 samples that reveal a clear trend, where *greater chitosan content results in lower density*. A lower density indicates a more porous material. ***Theoretical density was calculated based on the rule of mixtures formula (Equation (S1)):

$$\rho = \frac{\rho_1 \rho_2 \rho_3}{\omega_1 \rho_2 \rho_3 + \omega_2 \rho_1 \rho_3 + \omega_3 \rho_1 \rho_2}$$
(S1),

where ρ_i and ω_i are the density and mass fractions of the single components, respectively. Numbers 1, 2 and 3 correspond to PANI, CHT and PVA, respectively. The density of PANI (in its base form) was 1.24 g/cm³ [6], CHT and PVA are 0.7 and 1.29 g/cm³, respectively (see section 2.1 above).

Figure S4. Fitting lines for (**a**) CHP25-PVA, (**b**) CHP50-PVA, (**c**) CHP75-PVA and (**d**) pristine CHT MB kinetic uptake according to the PFO and PSO models. The error bars were determined using OriginLab 2019 software (see Table S5).

Model Parameters	Pseudo-First Order	Pseudo-second Order
Equation	$y = q(1 - e^{-kx})$	$y = \frac{q^2kx}{1+qkx}$
Plot	$Q_t = f(t)$	$Q_t = f(t)$
q	11.64 ± 0.20	13.36 ± 0.11
k	0.03821 ± 0.00174	$(3.431 \pm 0.115) \times 10^{-3}$
Reduced Chi-Sqr	1.979×10^{-7}	3.231 × 10 ⁻⁸
R-Square (COD)	0.9859	0.9977
Adj. R-Square	0.9852	0.9976
q	17.78 ± 0.37	19.87 ± 0.30
k	0.09079 ± 0.00621	$(6.353 \pm 0.465) \times 10^{-3}$
Reduced Chi-Sqr	7.738 × 10-7	2.754 × 10-7
R-Square (COD)	0.9727	0.9903
Adj. R-Square	0.9710	0.9897
q	24.52 ± 0.43	26.59 ± 0.23
k	0.12785 ± 0.00988	$(7.478 \pm 0.403) \times 10^{-3}$
Reduced Chi-Sqr	1.896×10^{-6}	3.229 × 10-7
R-Square (COD)	0.9587	0.9930
Adj. R-Square	0.9565	0.9926
q	2.47 ± 0.003	2.69 ± 0.06
k	0.04473 ± 0.00039	0.02591 ± 2.64
	Model Parameters Equation Flot Q Q Reduced Chi-Sqr Adj. R-Square (COD) Adj. R-Square Reduced Chi-Sqr Reduced Chi-Sqr Reduced Chi-Sqr Reduced Chi-Sqr Reduced Chi-Sqr R-Square (COD) Adj. R-Square Q Adj. R-Square Adj. R-Square Adj. R-Square Q Adj. R-Square Q Reduced Chi-Sqr Reduced Chi-Sqr Q Reduced Chi-Square Q Reduced Chi-Sqr R-Square (COD) Adj. R-Square Q Adj. R-Square Q Adj. R-Square Q Adj. R-Square Adj. R-Square	Model ParametersPseudo-First OrderEquation $y = q(1 - e^{-kx})$ Flot $Q_t = f(t)$ q11.64 ± 0.20q11.64 ± 0.20k0.03821 ± 0.00174Reduced Chi-Sqi1.979 × 10.7R-Square (COD)0.9859Adj. R-Square0.9852Reduced Chi-Sqi1.7.78 ± 0.37Reduced Chi-Sqi0.9079 ± 0.00621Reduced Chi-Sqi0.9727Adj. R-Square0.9727Adj. R-Square0.9721Adj. R-Square0.9721Reduced Chi-Sqi1.896 × 10.6Reduced Chi-Sqi1.896 × 10.6Reduced Chi-Sqi0.92587Adj. R-Square0.9587Adj. R-Square0.9587Adj. R-Square0.9565Adj. R-Square0.92561Adj. R-Square0.92561Adj. R-Square0.92561Adj. R-Square0.9265Adj. R-Square0.9247 ± 0.003Adj. R-Square0.9247 ± 0.003Adj. R-Square0.94473 ± 0.003

Table S5. Error bars for the adsorption experiments shown in Figure S4.

Reduced Chi-Sqr	7.495 × 10-9	1.408×10^{-8}
R-Square (COD)	0.9531	0.9701
Adj. R-Square	0.9531	0.9688

Figure S5. Batch adsorption experiment that illustrates decolorization of FL solutions by the PANI-based adsorbent at pH 7: (**a**) initial solutions (before adsorption); (**b**) after 24 h (after adsorption). The vials numbered 501–515 indicate that this experiment was conducted for CHP25-PVA doped (#5) in the range of FL concentrations 20 to 500 μ M (#01 to #15).

Table S6. Water vapor adsorption parameters of the doped and undoped composites in their film form.

	Adsorption			Desorption				
	ω _{max} (‰)	а	b	R ²	ω _{max} (‰)	С	d	R ²
CHP25-PVA doped	267	1.77	3.92	0.996	267	0.0233	-0.0201	0.999
CHP50-PVA doped	308	1.71	4.13	1.000	308	0.0207	-0.0179	0.997
CHP75-PVA doped	336	1.25	4.68	0.993	336	0.0205	-0.0180	0.998
CHP25-PVA	224	1.91	3.57	0.993	224	0.0247	-0.0208	0.998
CHP50-PVA	230	1.09	4.46	0.999	230	0.0252	-0.0215	0.998
CHP75-PVA	241	1.53	4.05	0.993	241	0.0237	-0.0201	0.998

Table S7. Current-voltage parameters for the I-V curves of samples in their film form. .

	Film	β	<i>К</i> (µА·ст ⁻² ·V ^{-β})	R^2
	CHP25-PVA70 doped	1.26	0.0122	0.998
(a)	CHP50-PVA70 doped	2.44	0.000350	0.999
-	CHP75-PVA70 doped	1.85	0.00193	0.999

Figure S6. DMA mechanical properties of the base-neutralized films in their (**a**) dry, and (**b**) wet state: I – loss modulus; II – tan delta.

References

- 1. Mahaninia, M.H.; Wilson, L.D. Modular Cross-Linked Chitosan Beads with Calcium Doping for Enhanced Adsorptive Uptake of Organophosphate Anions. *Ind. Eng. Chem. Res.* **2016**, *55*, 11706–11715.
- 2. Mohamed, M.H.; Dolatkhah, A.; Aboumourad, T.; Dehabadi, L.; Wilson, L.D. Investigation of templated and supported polyaniline adsorbent materials. *RSC Adv.* **2015**, *5*, 6976–6984.
- Do Nascimento, G.M., Spectroscopy of Polyaniline Nanofibers. Available Online: <u>https://www.intechopen.com/books/nanofibers/spectroscopy-of-polyaniline-nanofibers</u> (access on 6 February 2020).
- 4. Trchova, M.; Stejskal, J. Polyaniline: The Infrared Spectroscopy of Conducting Polymer Nanotubes (IUPAC Technical Report). *Pure Appl. Chem.* **2011**, *83*, 1803–1817.

- Mansur, H.S.; Sadahira, C.M.; Souza, A.N.; Mansur, A.A.P. FTIR Spectroscopy Characterization of Poly (Vinyl Alcohol) Hydrogel with Different Hydrolysis Degree and Chemically Crosslinked with Glutaraldehyde. *Mater. Sci. Eng. C* 2008, *28*, 539–548.
- 6. Stejskal, J.; Gilbert, R.G. Polyaniline. Preparation of a Conducting Polymer (IUPAC Technical Report). *Pure Appl. Chem.* **2002**, *74*, 857–867.