A Novel Design and Performance Results of An Electrically Tunable Piezoelectric Vibration Energy Harvester (TPVEH)
Abstract
:1. Introduction
2. Design of A Novel Tunable Piezoelectric Vibration Energy Harvester (TPVEH) and Experimental Work
2.1. Materials Utilized and Design Concept of the Device
2.2. Experimental Setup
2.3. Conduction of Experiments
2.4. Results and Analysis: Configuration 1
3. Effect of Distance of Loading Point from the IPMC Actuator: Configuration 2
3.1. Conduction of Experiments
3.2. Results and Analysis: Configuration 2
4. Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sahdom, A. Application of Micro Electro-Mechanical Sensors (MEMS) Devices with Wifi Connectivity and Cloud Data Solution for Industrial Noise and Vibration Measurements. J. Phys. Conf. Ser. 2019, 1262, 012025. [Google Scholar] [CrossRef]
- Berdy, D.; Srisungsitthisunti, P.; Jung, B.; Xu, X.; Rhoads, J.; Peroulis, D. Low-frequency meandering piezoelectric vibration energy harvester. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2012, 59, 846–858. [Google Scholar] [CrossRef] [PubMed]
- Alameh, A.; Gratuze, M.; Elsayed, M.; Nabki, F. Effects of Proof Mass Geometry on Piezoelectric Vibration Energy Harvesters. Sensors 2018, 18, 1584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eichhorn, C.; Goldschmidtboeing, F.; Woias, P. Bidirectional frequency tuning of a piezoelectric energy converter based on a cantilever beam. J. Micromech. Microeng. 2009, 19, 094006. [Google Scholar] [CrossRef]
- Leland, E.; Wright, P. Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload. Smart Mater. Struct. 2006, 15, 1413–1420. [Google Scholar] [CrossRef]
- Qi, S.; Shuttleworth, R.; Olutunde Oyadiji, S.; Wright, J. Design of a multiresonant beam for broadband piezoelectric energy harvesting. Smart Mater. Struct. 2010, 19, 094009. [Google Scholar] [CrossRef]
- Leadenham, S.; Erturk, A. Nonlinear M-shaped broadband piezoelectric energy harvester for very low base accelerations: Primary and secondary resonances. Smart Mater. Struct. 2015, 24, 055021. [Google Scholar] [CrossRef] [Green Version]
- Huang, P.; Tsai, T.; Yang, Y. Wide-bandwidth piezoelectric energy harvester integrated with parylene-C beam structures. Microelectron. Eng. 2013, 111, 214–219. [Google Scholar] [CrossRef]
- Hajati, A.; Kim, S. Ultra-wide bandwidth piezoelectric energy harvesting. Appl. Phys. Lett. 2011, 99, 083105. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Chen, K. Design, analysis, and experimental studies of a novel PVDF-based piezoelectric energy harvester with beating mechanisms. Sens. Actuators A Phys. 2016, 238, 317–328. [Google Scholar] [CrossRef]
- Wu, X.; Lin, J.; Kato, S.; Zhang, K.; Ren, T.; Liu, L. A frequency adjustable vibration energy harvester. In Proceedings of the Power MEMS 2008+ microEMS2008, Sendai, Japan, 9–12 November 2008. [Google Scholar] [CrossRef]
- Koven, R.; Mills, M.; Gale, R.; Aksak, B. Low-Frequency and Broadband Vibration Energy Harvesting Using Base-Mounted Piezoelectric Transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2017, 64, 1735–1743. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Yan, B.; Inman, D. A Novel Nonlinear Piezoelectric Energy Harvesting System Based on Linear-Element Coupling: Design, Modeling and Dynamic Analysis. Sensors 2018, 18, 1492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, H.; Liu, J.; Tang, G.; Yang, C.; Li, Y.; He, D. A Broadband Frequency Piezoelectric Vibration Energy Harvester. Key Eng. Mater. 2011, 483, 626–630. [Google Scholar] [CrossRef]
- Lu, Q.; Scarpa, F.; Liu, L.; Leng, J.; Liu, Y. An E-shape broadband piezoelectric energy harvester induced by magnets. J. Intell. Mater. Syst. Struct. 2018, 29, 2477–2491. [Google Scholar] [CrossRef] [Green Version]
- Fan, K.; Tan, Q.; Zhang, Y.; Liu, S.; Cai, M.; Zhu, Y. A monostable piezoelectric energy harvester for broadband low-level excitations. Appl. Phys. Lett. 2018, 112, 123901. [Google Scholar] [CrossRef]
- Jung, H.; Lee, S.; Jeong, S.; Yoo, H. Segmented impact-type piezoelectric energy harvester for self-start impedance matching circuit. Smart Mater. Struct. 2018, 27, 114006. [Google Scholar] [CrossRef]
- Anton, S.; Sodano, H. A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater. Struct. 2007, 16, R1–R21. [Google Scholar] [CrossRef]
- Nah, S.K.; Zhong, Z.W. A microgripper using piezoelectric actuation for micro- object manipulation. Sens. Actuators A 2007, 133, 218–224. [Google Scholar] [CrossRef]
- Jaronie, M.J.; Martin, L.; Aleksandar, S.; Mark, A.G. A review of shape memory alloy research, applications and opportunities. Mater. Des. 2014, 56, 1078–1113. [Google Scholar]
- Smart Material, Energy Harvester. Available online: https://www.smart-material.com/ (accessed on 26 March 2020).
- Mohsen, S.; Kwang, J.K. Ionic polymer-metal composites: I. Fundamentals. Smart Mater. Struct. 2001, 10, 819. [Google Scholar]
- Environmental Robots Inc., Products. Available online: https://www.environmental-robots.com/ (accessed on 26 March 2020).
- Chung, C.K.; Hong, Y.; Wu, T.C. A novel fabrication of ionic polymer metal composites actuator with silver nano powders. In Proceedings of the 13th International Conference on Solid State Sensors, Actuators and Microsystems, Digest of Technical Papers, Seoul, Korea, 5–9 June 2005. [Google Scholar]
# | IPMC Input V | IPMC Input µA | Resonant Frequency of PVEH Hz | PVEH Output V | PVEH Output µA | PVEH Power Output µW | Power Input to IPMC µW | Net Power Output of PVEH µW |
---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | 5.9 | 5.0 | 5.8 | 29.0 | 0 | 29 |
2 | 1.5 | 0.51 | 7.57 | 4.3 | 12.1 | 52.03 | 0.765 | 51.265 |
3 | 1.9 | 1.2 | 7.7 | 4.2 | 11.9 | 49.98 | 2.28 | 47.7 |
4 | 2.1 | 2.8 | 8.0 | 4.9 | 13.1 | 64.19 | 5.88 | 58.31 |
# | IPMC Input V | IPMC Input µA | Resonant Frequency Hz | PVEH Output V | PVEH Output µA | PVEH Power OutputµW | Power Input to IPMC µW | Distance of IPMC Tip from Cantilever—h mm | Net Power Output µW |
---|---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | 8.3 | 3.9 | 9 | 35.1 | N/A | ||
2 | 1.5 | 0.51 | 8.6 | 3.85 | 8.8 | 33.88 | 0.765 | 30 | 33.11 |
3 | 1.5 | 0.51 | 8.8 | 3.83 | 8.8 | 33.70 | 0.765 | 25 | 32.93 |
4 | 1.5 | 0.51 | 8.9 | 3.7 | 8.1 | 29.97 | 0.765 | 20 | 29.20 |
5 | 1.5 | 0.51 | 9.1 | 3.4 | 7.9 | 26.86 | 0.765 | 15 | 26.09 |
6 | 1.5 | 0.51 | 9.9 | 3.35 | 7.9 | 26.46 | 0.765 | 10 | 25.69 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raghavan, S.; Gupta, R. A Novel Design and Performance Results of An Electrically Tunable Piezoelectric Vibration Energy Harvester (TPVEH). J. Compos. Sci. 2020, 4, 39. https://doi.org/10.3390/jcs4020039
Raghavan S, Gupta R. A Novel Design and Performance Results of An Electrically Tunable Piezoelectric Vibration Energy Harvester (TPVEH). Journal of Composites Science. 2020; 4(2):39. https://doi.org/10.3390/jcs4020039
Chicago/Turabian StyleRaghavan, Sreekumari, and Rishi Gupta. 2020. "A Novel Design and Performance Results of An Electrically Tunable Piezoelectric Vibration Energy Harvester (TPVEH)" Journal of Composites Science 4, no. 2: 39. https://doi.org/10.3390/jcs4020039
APA StyleRaghavan, S., & Gupta, R. (2020). A Novel Design and Performance Results of An Electrically Tunable Piezoelectric Vibration Energy Harvester (TPVEH). Journal of Composites Science, 4(2), 39. https://doi.org/10.3390/jcs4020039