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Abstract: Composite coatings are commonly applied to medical metal implants in order to improve
biocompatibility and/or bioactivity. In this context, two types of titanium-based composite coatings
have been reviewed as biocompatible and anti-bacterial coatings. The different composites can be
synthesised on the surface of titanium using various methods, which have their own advantages and
disadvantages. Moving with the smart and nanotechnology, multifunctional nanocomposite coatings
have been introduced on implants and scaffolds for tissue engineering with the aim of providing
more than one properties when required. In this context, titanium dioxide (TiO2) nanotubes have
been shown to enhance the properties of titanium-based implants as part of nanocomposite coatings.

Keywords: implants; tissue engineering; scaffolds; orthopaedics; composite; nanotechnology; smart
technology; anti-wear; biocompatible; anti-bacterial

1. Introduction

An implant is a manmade material inserted in the human body with the aim of repairing or
replacing the previously damaged tissue [1]. Composite coatings are widely used on different types
of materials to enhance the compatibility and durability of implants. Metallic materials are still the
main biomaterial for dental or skeletal implants owing to their exceptional mechanical properties [2–5].
Cobalt-based alloys, stainless steel and titanium and its alloys are known metallic materials, which
have been used as implants. However, due to the lowest Young’s modulus and corrosion resistance of
titanium and its alloys, they are considered to be the best option for metallic implants even though the
modulus is still higher than natural bone [6]. The factor that contributes to the corrosion resistance
of titanium is the presence of the inert surface of a naturally formed oxide layer on the latter [7].
Nonetheless, since titanium alloy is preferred over pure titanium in the medical field due to the higher
mechanical strength, the naturally formed oxide layer on the alloy is not always stable, and alloy
metal species are released from the surface, which can be toxic [8,9]. Modifying the oxide layer under
certain conditions can prevent such leaching and even add enhancing properties to the implant [8,10].
Further emphasis has been placed on the modification of surface topography and/or surface chemistry
of biomaterials with the aim of functionalising the surface and making the implant last longer [11].
Roughening the oxide layer on titanium or its alloy is one of the modification processes, which make the
surface more biocompatible. This can be achieved through plasma spraying, sandblasting, acid etching
or anodisation [12,13]. Since the surface of the bone is nano-structured, nano-modification of surface
topography has attracted significant interest [11,14]. Growing titanium dioxide (TiO2) nanotubes on
the surface of Ti alloy is an effective way of providing the required roughness with a high surface to
volume ratio and hence high reactivity [15]. Anodisation is an electrochemical process whereby TiO2

nanotubes can be grown in-situ on the surface of titanium/titanium alloy. This fabrication process
is desirable as it allows the formation of uniform nanotubes arrays and a controllable pore size [16].
TiO2 nanotubes on titanium are known to improve the ability of apatite formation and cell activity in
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the surrounding [17]. Due to their tubular structure and the increased surface area to volume ratio,
the nanotubes can be used as scaffolds for other nanomaterials to provide additional properties to
the implant.

In the case of orthopaedic implants, the materials need to mechanically attach to the bone and
integrate into the body environment as well [18]. In this context, implants have been made in such a
way that they provide the mechanical properties required while being able to act as a scaffold for tissue
engineering and provide local drug delivery as well. This paper aimed to shed light on the different
types of composite coatings available (Section 2) and the methods used to fabricate them (Section 3).
Last but not least, Section 4 concentrates on the development in multifunctional composite coatings in
the field of implants.

2. Types of Composite Coatings

Composite coatings are used on different biomaterials. In this paper, Ti-6Al-4V was chosen as the
biomaterial in question as a base for the composite coatings owing to the vast usage in the orthopaedic
world. They are widely used as implant or fixation materials, and their surface can be modified to act
as a scaffold for tissue engineering. In this context, ceramics and biomolecules are the two main types
of composite coatings that are commonly used on Ti-6Al-4V-based implants depending on the purpose
of the latter [19,20].

In the world of orthopaedics, there is always the risk of infection due to the involvement of
foreign material inside a human body. Infection is a common cause of malfunction and failure [21–23].
Depending on the location where a biomaterial is used, it can be made anti-infective with the aim of
combatting infections or as prophylaxis [22,24]. Anti-infective agents can be coated on or embedded
in biomaterials to provide the necessary properties [22,24]. Section 2.1 concentrates on anti-bacterial
coating. Silver or zinc oxide nanoparticles, acting as anti-bacterial agents, can be embedded in TiO2

nanotubes on Ti-6Al-4V, which have been studied as composite coatings. The coatings for an implant
also have to be biocompatible, which means they are not toxic to the surrounding biological tissues [25].
Furthermore, the concept behind tissue engineering itself depends on the ability of materials to promote
cell adhesion and proliferation in order to facilitate tissue regeneration [26,27]. Section 2.2 is dedicated
to biocompatible composite coatings and concentrates on ceramic grown on titanium-based material.

2.1. Anti-Bacterial Coatings

Combatting infections in implants is of great significance. Composite coatings could be the
solution. Local anti-bacterial agent delivery is one such example that has been researched extensively
for use as composite coatings on implants. This method has been shown to be more efficient with low
toxicity [28]. TiO2 nanotubes have nanotubular structures, which can act as a carrier of anti-bacterial
nanoparticles aiming at local delivery [29,30]. Antibiotics have been used as a bactericidal agent on
nanotubes. However, implant-related infections are often caused by more than one bacterium, and
they occasionally develop resistance to antibiotics [31]. This is where metallic anti-bacterial feature
becomes the alternative solution. Silver, copper and zinc nanoparticles have been used positively on
TiO2 nanotubes due to their anti-bacterial property and nanostructures [32–39]. Nonetheless, the silver
nanoparticle is considered the best owing to the better anti-bacterial properties and the better resistance
to bacteria [40–42]. Thus, integrating silver nanoparticles to TiO2 nanotubes grown on titanium alloy
is an excellent example of an anti-bacterial composite coating for implants. The nanostructured
morphology of the embedded silver nanoparticles on the nanotubes attracts human cells to grow on the
surface, hence acting as a scaffold for tissue engineering [43,44]. However, silver nanoparticles are toxic
if released in high amounts at one time. Most studies analysing the behaviour of silver nanoparticles in
the presence of human cells have shown different levels of toxicity, depending on the release rate and
size of the nanoparticles [37,45]. For this reason, the size and attachment of the nanoparticles to the
nanotubes’ wall and the control of silver release from the coatings are the main factors to be considered
when growing the latter as composite coatings.
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Different methods have been employed to fabricate silver nanoparticles on the surface of TiO2

nanotubes grown on titanium or its alloy. One method of assembling uniformly distributed silver
nanoparticles on the nanotubes is electron beam evaporation [44,46]. The latter method has successfully
produced uniformly distributed silver nanoparticles on the surface of nanotubes coating on titanium.
In the study by Lan et al., 2013, the distribution of the nanoparticles was uniform with different sites of
attachments, depending on the diameter of the nanotubes on which they were attached [44]. Figure 1
shows the SEM images of the attached Ag nanoparticles on titania nanotubes of diameter 25, 50 and
100 nm. The size of the nanoparticles remained the same, even though the diameter of the nanotubes
increased. The nanoparticles were attached to the inside of the nanotubes wall when the diameter
was 100 nm, as seen in Figure 1F, while Figure 1D shows that when the diameter of the nanotube was
25 nm, the Ag particles were on the surface of the nanotubes layer, affecting the nano-topology of
the coating on titanium [44]. However, Figure 1G shows that the release of silver from the composite
coating over 2 weeks was the same in both cases. The silver release was a steady release over the
14 days in both cases.

Figure 1. (A–F): SEM images of self-organized TiO2 nanotubes with different diameters. The as-grown
(A–C) and Ag-decorated (D–F) nanotubes with diameters of 25, 50 and 100 nm, respectively. G:
Cumulative Ag release profiles from the 25- and 100-nm-diameter Ag-decorated nanotubes into
phosphate buffered saline, PBS. There were no statistical differences among the Ag-decorated samples
with regards to the nanotube diameter (SEM± SE, One-way ANOVA, p > 0.05, n = 3). (Reproduced with
permission from Lan et al., Both Enhanced Biocompatibility and Antibacterial Activity in Ag-Decorated
TiO2 Nanotubes; published by PLOS ONE, 2013, CC BY 4.0 [44]).

The anti-bacterial property of the composite coatings containing silver nanoparticles on TiO2

nanotubes was tested in the presence of Staphylococcus aureus grown in tryptic soy broth [44]. Figure 2
shows the composite coatings after 4 h of exposure to S. aureus. The coatings with Ag nanoparticles on
100 nm diameter nanotubes had the least bacteria present on the surface after the exposure (Figure 2F)
as compared to the coatings involving 25 nm diameter nanotubes (Figure 2D).

After confirming the anti-bacterial property of the composite coatings on titanium, there was a
need to make sure that the surface was not toxic to human cells. As such, the coated surfaces with
silver nanoparticles on TiO2 nanotubes with diameters ranging from 25 nm to 100 nm were exposed to
human fibroblast cells grown in Eagle’s minimum essential medium. It was observed that the cells
grew better on the 25 nm diameter nanotubes both in the presence and absence of silver nanoparticles,
as shown in Figure 3A,D.
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Figure 2. SEM images of S. aureus grown on as-grown or Ag-decorated TiO2 nanotubes of different
diameters. Numerous bacteria colonies on the as-grown nanotubes (A–C), while only a few bacteria
could be seen on the Ag-decorated series (D–F) (Reproduced with permission from Lan et al.,
Both Enhanced Biocompatibility and Antibacterial Activity in Ag-Decorated TiO2 Nanotubes; published
by PLOS ONE, 2013, CC BY 4.0 [44]).

Figure 3. SEM images, showing the cell adhesion and proliferation of human fibroblast cells on the
as-grown (A–C) and Ag-decorated (D–F) TiO2 nanotubes with the diameters of 25, 50 and 100 nm,
respectively. The fibroblasts cultured on the 25-nm-diameter nanotubes revealed good cell adhesion
with the development of an elongated cytoskeleton, while those on the 50-nm-diameter or larger
nanotubes showed rounded cell morphology with a lack of cell spread in both the as-grown and
Ag-decorated samples. (Reproduced with permission from Lan et al., Both Enhanced Biocompatibility
and Antibacterial Activity in Ag-Decorated TiO2 Nanotubes; published by PLOS ONE, 2013, CC BY
4.0 [44]).

In the study by Lan et al., a composite coating on titanium was successfully synthesised [44].
The coating provided the necessary anti-bacterial property against one of the main cause of infection in
implants, S. aureus [47]. It was also shown that human fibroblast cells could grow on the silver-containing
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surface as they would grow on just TiO2 nanotubes. Therefore, it could be concluded that the
silver nanoparticles added to titania nanotubes by e-beam are anti-bacterial while enhancing the
biocompatibility of the titanium. The low level of toxicity could be due to the steady release of silver
from the composite coatings, as seen in Figure 1G, over 14 days as the release of a large amount of
silver in the first 24 h have been shown to be toxic to cells. Several more similar coatings have been
synthesised throughout the last few years [46,48]. These types of anti-bacterial composite coatings
prevent infection as soon as they come in contact with bodily fluid. More research is still being done
with respect to growing silver nanoparticles on TiO2 nanotubes to provide anti-bacterial effect for
as long as possible [45]. This implies a slower release of silver from the composite coating and/or a
release of the anti-bacterial agent only when the infection is present. This is where smart coatings
could enhance the characteristics of composite coatings [49].

2.2. Biocompatible Coatings

With metallic orthopaedic implants, osseointegration is an issue when used on its own in the
human body; hence, there is a need for surface modification [50,51]. The main aim is to allow the
implant to integrate successfully in the human body while being able to deliver the necessary functions.
Increasing the surface roughness of titanium alloy is one option, which has gained enormous interest
over the last few years. Grit blasting and chemical etching are examples of such methods, but the
roughness and morphology of the resulting surface cannot be fully controlled [50,51]. In-situ grown
TiO2 nanotubes on the surface of Ti alloy is one way of providing a controllable nano roughness to the
surface, whereby the nanotubes provide the necessary scaffold for bone cells to grow [52–54]. Stress
shielding remains an issue with surface modification [55]. In this context, composite coatings with
lower modulus can help relieve the effect of stress shielding [55,56].

Hydroxyapatite (HA) is a bioceramic material that has a similar structure to the bone, but it does
not have the mechanical strength required to work in load-bearing application [57–59]. Nonetheless,
when used as a coating for titanium alloy, HA adds to the bioactivity of the alloy, hence increasing
the osseointegration of the alloy in the body [59,60]. Several techniques have been used to grow or
add HA on the surface of metals and alloys, such as sol-gel technique, plasma-spraying, biomimetic
deposition, electrodeposition, laser ablation, and so on [58,61].

To improve the adhesion and stability of HA coating on titanium (Ti), Liu et al. [62] investigated
the behaviour of osteoblast cells grown on HA-coated Ti. After having polished the titanium (PT), it
was acid-etched (labelled ET) with the aim of roughening the surface. The etched surface was then
exposed to 10 M NaOH in a high-pressure kettle at 100 ◦C for 24 h, hence labelled NT. Subsequently,
HA was deposited biomimetically on the alkali-treated surface by dipping NT in simulated body
fluid (SBF), hence forming HAp/NT. The surfaces of PT, ET, NT and HAp/NT were then viewed
under high-resolution scanning electron microscopy (SEM, Hitachi S-4800), and the elements present
were analysed using energy dispersive X-ray spectrum (EDX). Afterwards, they were exposed to
mouse osteoblastic MC3T3-E1 subclone 14 cell line in a-MEM (Minimum essential media) media.
3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and alkaline phosphatase
(ALP) assays were then performed on the cells grown on the coated and uncoated titanium after 2, 4, 6
and 8 days of exposure [63].

The SEM images of the PT, ET, NT and HAp/NT are shown in Figure 4A–D. Figure 4C shows
a flowery nano-structure from the sodium titanate formed from the alkali treatment, and Figure 4D
illustrates nano-needles’ structures formed on the surface of the anodised titanium, whereby a layer
of HA was present. Figure 4E confirms the presence of HA after exposure to SBF with the ratio of
calcium to phosphorus being 1.67. Further details on the chemistry involved in the growth of HA
would be discussed further in Section 3.4. The calculations from MTT assay by Liu et al. is expressed in
Figure 5A, whereby it could be observed that the cell growth during day 2 and 4 was not significantly
different on PT, NT and HAp/NT [62]. But as from day 6, both NT and HAp/NT showed a higher
number of cells. The ALP assay showed similar observations (Figure 5B). The change in morphology
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and the presence of HA did increase the biocompatibility of the titanium successfully. As mentioned
before, the nanostructure did mimic the nano-morphology of bone, allowing the coating to blend in.
Also, since HA have similar mineral phase to bone, osteoblast cells attachment was favourable, thereby
preventing rejection [64]. This study is one example where HA was used as a coating, which enhanced
the biocompatibility of the implant material [62].

Several more types of composite coatings containing organic molecules, nanoparticles and many
more are used on metals with the aim of providing biocompatibility to the material so that they
can integrate successfully in the body, hence reducing the risk of malfunction and/or rejection [65].
Nonetheless, biocompatibility in different parts of the body would require different composite coatings.
However, implants aiming at being in the heart or eye or any other part of the body would require
composite coatings made of biomaterials, promoting their integration in the respective organs.

Figure 4. Scanning electron microscopic image of (A) polished titanium, PT, (B) Acid-Etched, ET,
(C) Etched titanium exposed to sodium hydroxide, NT and (D) hydroxyapatite deposited on NT,
HAp/NT. (E) EDS analysis of the surface of HAp/NT, highlighting the ratio of calcium (Ca) to
phosphorus (P). (Reproduced with permission from Liu et al., Rapamycin/sodium hyaluronate binding
on nano-hydroxyapatite coated titanium surface improves MC3T3-E1 osteogenesis; published by PLOS
ONE, 2017, CC BY 4.0 [62]).
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Figure 5. (A) Cell vitality and (B) Alkaline phosphatase (ALP) activity of MC3T3-E1 cells after 2,
4, 6 and 8 days of exposure to PT, NT and HAp/NT (Reproduced with permission from Liu et al.,
Rapamycin/sodium hyaluronate binding on nano-hydroxyapatite coated titanium surface improves
MC3T3-E1 osteogenesis; published by PLOS ONE, 2017, CC BY 4.0 [62]).

3. Synthesis of Composite Coatings

There are different methods through which composite coatings can be synthesised, some of which
have been discussed in the previous section. Section 3 gives more details on the chemical/electrochemical
methods employed. This segment divides the different techniques that have been used to synthesise
composite coatings successfully in the past into four categories, namely, chemical deposition Section 3.1,
electrophoretic deposition Section 3.2, electrochemical deposition (anodising, electroplating) Section 3.3,
biomimetic deposition Section 3.4. The remaining techniques, such as plasma spraying, ion beam, laser
deposition, are described in Section 3.5.

3.1. Chemical Deposition

Composite coatings on implants usually involve various chemical components, so manipulating
the chemistry involved is the main concept behind the synthesis of the coatings for different materials.
A chemical deposition is one fabrication technique, allowing specific reactions to take place on the
surface of the material to be coated so that the coating sticks to the substrate. Chemical deposition can
vary in different ways, and examples of chemical deposition include the surface chemical conversion,
chemical vapour deposition, sol-gel deposition and dip coating. Examples of the complex version of
chemical deposition are electrochemical deposition and biomimetic deposition, which will be described
later [66]. The sol-gel technique is a method whereby a chemical solution is used to produce a network
of particles after the solvent from the solution has been evaporated, which is used very often in the
fabrication of composite coatings because of its ability to produce multicomponent coatings of various
size, shape and format [67–69]. This technique is effective while being cost-effective and simple [69–71].
Issues with the sol-gel method are that it is the most time consuming, and the adhesive strength
between the composite coating and the material is not that strong [72,73]. Chemical vapour deposition
(CVD) is a widely used chemical deposition method whereby the substrate to be coated is exposed to
the precursor of the material to be coated, which reacts on the substrate forming the required coating.
It has many advantages as being a low cost and low maintenance procedure, which can produce a
uniform coating with structural control at the nanometer level [74–77]. CVD has been selected as
it is low-cost, low maintenance and effective process for depositing uniform films, exhibiting good
adhesion to the growing substrate; moreover, the easiness in controlling the growth rate allows a high
reproducibility of the samples. However, CVD requires high vacuum and specific precursor material,
which can be evaporated [78–80]. Chemical conversion is a process whereby the required coating is
produced on the substrate from a source in the solution. It a method widely used for the synthesis of
graphene oxide [81] and silver nanoparticles. As part of bone implants, AgNp/TiO2 composite coating
on titanium has been used successfully, as mentioned in Section 2.1. There are issues with toxicity,
which have been overcome by ongoing research by the researchers mentioned in the latter section, but
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the anti-bacterial properties of the latter coating triumphed over the toxicity issue (Section 2.1). There
are several methods of synthesis, among which chemical reduction is one of the simplest and most
commonly used [82,83]. The commonly used reducing agents for this reaction are sodium borohydride,
sodium dodecyl sulphate, citrate, ascorbate and elemental hydrogen [82–84]. The reason behind
its vast use is the fact that nanoparticles of different morphology and dimensions can be fabricated
using this method [82,85]. In previous work, silver nanoparticles have been successfully synthesised
on the surface of TiO2 nanotubes. In this section, the chemical reduction of silver nanoparticles on
the nanotubes has been discussed, while Section 3.3 has analysed the electrochemical method of
synthesising the underlying nanotubes.

Figure 6. SEM images of silver nanoparticles forming micro-clusters on titanium dioxide nanotubes,
TNT grown using (A) 0.005 M, (B) 0.01 M and (C) 0.015 M of silver ammonia solution and 0.002 M
δ-gluconolactone as a mixture at low magnification. (D–F) show the higher magnification of (A), (B)
and (C). (G) EDS analysis of the silver nanoparticles grown on TNT, showing the distribution of the
different components on the surface. (Reproduced with permission from Gunputh et al., Anodised
TiO2 nanotubes as a scaffold for antibacterial silver nanoparticles on titanium implants; published by
Elsevier, 2018, [39]).

In the study by Gunputh et al. [39], delta-gluconolactone was used as a reducing agent for silver
ammonia with the aim of forming silver nanoparticles of diameter less than 100 nm which were formed
in clusters of varied dimensions. In the latter study, the concentration of the δ-gluconolactone used was
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maintained at 0.002 M throughout. Initially, in method 1, the TiO2-coated Ti-6Al-4V alloy was exposed
to the mixture of the silver source, silver ammonia and gluconolactone for 10 min. The concentration
of the silver ammonia (S) was varied from 0.005 M to 0.015 M, and the resulting clusters formed on the
surface of the nanotubes (TNT) are illustrated in Figure 6. TNT-S was used as a labelling aid, whereby
TNT represented the nanotubes, and S represented silver ammonia used followed by the respective
concentration in number. As such TNT-S 0.005 represented a silver nanoparticles-coated titanium
dioxide nanotubes, whereby a concentration of 0.005 M silver ammonia was used. Panels A–C show a
low magnification of the TNT-S coating, and D-F show a higher magnification of the respective figures
TNT-S0.005, TNT-S0.01 and TNT-S0.015, whereby micro-clustering was observed with an increase in
the size of the clusters with an increase in the concentration of silver source. The low magnification
showed the coverage of the coating, while the higher magnification zoomed in to have a closer look at
the morphology of the clusters.

Figure 7. SEM images of nanoclusters of silver nanoparticles grown by using 0.015 M Silver Ammonia
and 0.002 M δ-gluconolactone and the exposure time to silver ammonia being (A) 1 min, (B) 5 min
and (C) 10 min and exposure to G being 5 min. (D–F) Higher magnification SEM images of TNT-S1G5,
S5G5 and S10G5, respectively. (G) EDS analysis of the silver nanoparticles-coated TNT. (Reproduced
with permission from Gunputh et al., Anodised TiO2 nanotubes as a scaffold for antibacterial silver
nanoparticles on titanium implants; published by Elsevier, 2018, [39]).
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Using the same chemical reduction method, in method 2, TNT was exposed to 0.015 M silver
ammonia for 1-10 min followed by exposure to 0.002 M gluconolactone for 5 min. Panels A–C of Figure 7
show the low magnification image of the coated surfaces of S1G5, S5G5 and S10 G5, respectively, with
the number being the duration for which the samples were left in the latter solution. Panels D–F show
the same coatings at a higher magnification, whereby the size of the nano-clusters was seen reducing
with increasing duration of exposure to silver ammonia. In both Figures 6 and 7, G represents the EDS
analysis, which confirms the nanoparticles to be silver.

The clustering was assumed to happen because of the large size of the gluconolactone molecule
reducing silver ammonia. The latter molecule had several –OH, and, as such, for each molecule of
reducing agent, four silver components were reduced, and they would attach to each other. After
each coating was synthesised, the coated material was ultrasonicated in deionised water for 10 min to
remove the excessive silver attached to the surface. Then, they were exposed to simulated body fluid
in triplicates (n = 3) with the aim of measuring the amount of silver released from the coating after
24 h. The micro-clustering was seen to release a significantly larger amount of silver as measured by
ICP-MS as compared to the nano-clustering (Figure 8). After analysing the distribution and release
of silver from the coating, coating from method 2, TNT-S10G5 was found to be the best to be used
as a coating on implants as it had a uniform distribution of nanoclusters of silver nanoparticles fully
covering TNT while releasing the least amount of silver from the coating after 24 h exposure to SBF. In
the human body, too much silver can be toxic, as mentioned in Section 6.2.3; as such, an ideal implant
needs to release enough silver to be bactericidal while being biocompatible.

To summarise, in general, chemical deposition is a cheap and simple method of synthesising
composite coating, whereby huge effort is not needed, and the resulting nano-structure and distribution
of the coating can be manipulated by modifying the involved parameters, such as the concentration of
chemicals, temperature or duration of exposure to the substrate.

Figure 8. ICP analysis of acidified simulated body fluid (SBF) after 24 h exposure of samples from (A)
method 1 and (B) method 2 of silver nanoparticles synthesis, showing the silver release in both cases.
In both cases, TNT and Blank (α) expressed a similar presence of ions in the SBF (p > 0.05). In (A),
TNT-S0.005, TNT-S0.01 and TNT-S0.015 had significantly different amount of silver in the SBF from each
other (β) and were significantly different from the controls (p < 0.05). In (B), similar observations were
obtained with TNT-S1G5, TNT-S5G5 and TNT-S10G5, having a significantly different amount of silver
in SBF from each other and the controls with a p-value less than 0.05. (Reproduced with permission
from Gunputh et al., Anodised TiO2 nanotubes as a scaffold for antibacterial silver nanoparticles on
titanium implants; published by Elsevier, 2018, [39]).
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3.2. Electrophoretic Deposition

Electrophoretic deposition is an electrodeposition method, whereby an electric field is applied
between two electrodes in a suspension, whereby the particles move towards the oppositely charged
electrode, which is the substrate to be coated [72,86,87]. It has been successfully used to fabricate
composite coatings for biomedical devices [88,89]. Examples of such coatings are HA, reinforced HA,
polymers, bioglass, graphene-containing material and many more [90–92]. The electrophoretic method
also allows the co-deposition of polymers and ceramics, which make this method favourable when it
comes to composite coating [86]. However, sometimes pre-treatment and/or post-treatment is required
in order to stabilise or strengthen the coating [72,92]. Even though sometimes the electrophoretic
deposition is used as a 2-step procedure, it is still widely used in the synthesis of composite coatings
because of its efficiency, homogeneity, high deposition rate, ability to produce controllable thickness,
inexpensiveness and versatility [88,89,93]. It has been successfully used to coat surfaces of bulk objects
and to infiltrate porous substrates.

Several researchers have successfully coated biomaterials with composite coatings, which, in turn,
has provided the required biological properties as hypothesized in their work. Seuss et al. were able to
use alternating current-electrophoretic deposition (AC-EPD) to produce composite coatings made of
chitosan and Bioglass on Ti-6Al-4V. The latter coatings were shown to be bioactive and anti-bacterial
while being robust [87]. Chen et al. fabricated a polyvinyl acohol-reinforced alginate-Bioglass composite
coating on 316L stainless steel with excellent adhesive strength [94]. Xiong et al. synthesised an HA
composite coating on Mg alloy using micro-arc oxidation followed by EPD [95]. The latter composite
coating was shown to have good anti-corrosion properties [95]. Similar observations have been made
when a ceramic/organic composite-coated Mg alloy has been shown to be corrosion-resistant [96].

Electrophoretic deposition on its own or used in collaboration with another technique has been
shown to give rise to robust, corrosion-resistant, biocompatible and even anti-bacterial composite
coating. Several types of research have been done on the latter, and more is being done with the aim of
combining all the required properties in one composite coating. The whole aim is to be able to coat
implants successfully while acting as a platform for successful tissue engineering.

3.3. Electrochemical Deposition

Electrochemical deposition, as per its name, is a deposition method, whereby chemical deposition
is assisted by a current. During this process, an electric field is applied in a liquid-containing dispersed
charged particles between the substrate to be coated and another electrode so that a thin layer of the
coating is formed [97–99]. Similar to chemical deposition, an electrochemical deposition involves no
high temperature or pressure and no high cost, and the technique is easily portable [50,97,98].
An electrochemical deposition allows the synthesis of homogeneous coating of micro to
nanoparticles [72,99]. The most important reason for its use in composite coatings is the fact that
this method allows deposition of more than one material on a substrate [58,98]. Several composite
coatings have been successfully synthesised on the surface of the metal with respect to using it on
implants and for tissue engineering. Examples of such coatings are the different chemical phase of
calcium phosphates, including hydroxyapatite and hydroxyapatite-reinforced with carbon nanotubes
(CNTs), TiO2, ZrO2 and chitosan [100–102]. The hydroxyapatite formed using this method has been
shown to have higher wear and corrosion resistance and a higher adhesive strength when reinforced
with other materials. There are several factors that influence the characteristics of the coatings, such
as the structure, coverage, morphology and associated properties. The influencing parameters of
the electrochemical reaction are the current or voltage applied and the composition and pH of an
electrolytic bath [75,98].

An example of an electrochemical method is the anodisation method, whereby the substrate to be
coated is made the anode [72]. Anodisation is one of the main methods of synthesising TiO2 nanotubes,
which can be embedded with other nanoparticles for the use as a drug-carrying composite coating
on titanium alloy, as mentioned in Section 3.1. Among the various electrolytes that have been used
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in the latter synthesis, aqueous electrolytes are considered to produce strongly adhered nanotubes
due to the rougher exterior nanotube walls [103,104]. A previous study by Danookdharree et al. shed
light on the influencing factors of the process, such as pH and initial voltage ramp. The 0.2–0.5 wt%
NH4F and 0.5–1 M NH4H2PO4 were used as electrolytes, which provided the necessary ions for the
redox reaction, as shown in Figure 9A [105]. The reaction led to the formation of uniformly distributed
TiO2 nanotubes with 116.2 ± 6.4 nm (mean ± S.E.M., n = 6) diameter on the majority of the surface of
Ti-6Al-4V disc, as shown in Figure 9B,C, whereby Figure 9C zooms on the β-phase of the alloy, which
had smaller nanotubes than the α-phase (104.4 ± 4.7 nm).

Figure 9. (A) Anodisation process using NH4F and NH4H2PO4 as electrolytes, (B) an example of
the resulting nanotubes formed on the majority of the Ti-6Al-4V alloy disc and (C) the difference in
the nanotubes in the α and β phase of the alloy, as viewed under the SEM at ×50,000 magnification.
(Reproduced with permission from Danookdharree et al., The Effect of Initial Etching Sites on the
Morphology of TiO2 Nanotubes on Ti-6Al-4V Alloy; published by IOP, 2015, [105]).

The pH did not have any effect on the diameter of the nanotubes, as seen in Figure 10A, but the
increase in the initial sweep rate from 0.2 to 1.5 V/s led to a decrease in the diameter of the nanotubes, as
shown in Figure 10B. Nonetheless, when there is an increase in the actual voltage used for anodisation,
the nanotubes’ diameter is known to increase [65].

The electrochemical technique can be simple, but every single aspect of the experiment does
affect the resulting coating and has to be carefully considered [106–108]. This is what makes the latter
method one of the best deposition techniques for composite coating, especially at a nano-level.
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Figure 10. Variation of nanotubes dimensions with respect to (A) pH and (B) sweep rate. Reproduced
with permission from Danookdharree et al., The Effect of Initial Etching Sites on the Morphology of
TiO2 Nanotubes on Ti-6Al-4V Alloy; published by IOP, 2015, [105]).

3.4. Biomimetic Deposition

Biomimetic deposition, as per its name, is a deposition method, whereby a synthetic deposition is
made by mimicking a biochemical reaction. Among the different methods of synthesis of composite
coatings, the biomimetic deposition method takes place on its own and does not require any reducing
agent or external voltage for the process [109,110]. It is also considered to be environmentally friendly
and inexpensive [111]. Different types of materials, such as metals and metal oxides, like Au,
Ag, SiO2, TiO2, ZrO2, can be synthesised using the biomimetic method [112,113]. In the world of
orthopaedics, there is a bigger interest in the biomimetic synthesis of hydroxyapatite on metals with
the aim of increasing biocompatibility and promoting osseointegration, as mentioned in Section 2.2.
The biomimetic growth of HA on metals started with the work of Kokubo when the author grew
TiO2 nanotubes on the surface of titanium followed by the exposure of the latter coated surface to
simulated body fluid with pH (7.4) and ion concentrations (Na+ 142.0, K+ 5.0, Mg2+ 1.5, Ca2+ 2.5,
HCO3− 4.2, Cl− 147.8, HPO4

3− 1.0, SO4
2− 0.5 mM), which are nearly equal to those of human blood

plasma at 36.5 ◦C for 10 days [114]. Hydroxyapatite having 10CaO·3P2O5·H2O as a chemical formula
has a calcium to phosphorus ratio (Ca/P) of 1.67 [115,116]. As such, when growing the latter on metal,
several parameters have to be considered to make sure that the resulting coating does have the specific
Ca/P ratio.

An example of an HA coating formed using this method is shown in Figure 4D. The latter figure
illustrates the uniformly distributed nanostructure of HA on the surface of titanium foil. The EDS
analysis also confirmed the calcium to phosphorus ratio of 1.67 (Figure 4E). The original method used by
Kokubo (1997) took 10 days for HA to successfully grow on the surface of metal [114]. A quicker method
of fabricating the coating using biomimetic deposition would be to use a concentrated version of the
SBF while making sure that the pH and temperature are maintained with continuous replenishment of
the concentrated SBF so that the appropriate ratio of Ca/P is obtained [109,117]. The concept around the
synthesis of hydroxyapatite revolves around the initial nucleation stage, whereby calcium is attached
on the surface of the material before crystallising to HA crystals [114,118–120]. With the aim of growing
hydroxyapatite at a nano-level, in order for nucleation to happen, a rough base is required. In the case
of the study of the growth on titanium, the metal was initially etched in concentrated alkali, hence
creating a rough TiO2 surface [62]. The following alkali treatment with NaOH then creates sodium
hydrogen titanate layer, which converts to sodium titanate as per Equation (1) [114,118]. Then, the
titanate acts as a base for the nucleation to start once exposed to SBF. As a result, calcium titanate is
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formed according to Equation (2), after which, calcium phosphate (Equation (3)) is formed, which
allows the apatite crystals to successfully form as per Equation (4) [118,120]. The concept behind the
growth of the HA on the titanium foil is summarised in Figure 11, whereby the effect of the different
steps on the surface morphology is demonstrated.

TiO2 + NaOH→ NaHTiO3 → NaTiO3− + H+ (1)

2NaTiO3− + 2Ca2+
→ 2Ca(HTiO3)2 + 2Na+ (2)

3Ca(HTiO3)2 + 2HPO42− → Ca3(PO4)2 + 6TiO2 + 4H2O + 2O2 (3)

Ca3(PO4)2 + 7Ca2+ + 4HPO43− + 2OH− → Ca10(PO4)6(OH)2 + 2H2 (4)

The biomimetic method is already time-consuming and difficult to get it perfectly right. In such a
situation, adding other material to the base material allows a better bond between the HA and the
base. Examples of such materials are graphene oxide, collagen, gelatin, carbon nanotubes and many
more [109,111,117].

Figure 11. Surface topographical changes during the pre-treatment of the titanium foil surface
before and after the addition of hydroxyapatite (HA). (Reproduced with permission from Liu et al.,
Rapamycin/sodium hyaluronate binding on nano-hydroxyapatite coated titanium surface improves
MC3T3-E1 osteogenesis; published by PLOS ONE, 2017, CC BY 4.0 [62]).

3.5. Other Deposition Methods

There are many more deposition methods which are used and are being continuously researched
about. Examples of such methods are the layer by layer coating, plasma spraying, physical vapour
deposition, ion beam deposition, laser deposition and many more.

The layer-by-layer deposition method involves the deposition of oppositely charged particles
layer by layer and is mainly used when it comes to producing a coating involving more than one
component hence the research in relation to composite coating [121,122]. It is an easy, versatile and
efficient deposition method that has attracted attention in biomaterials synthesis [19,123]. In the world
of composite coatings, the latter deposition method has been used with the aim of functionalising the
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surface of inert material, synthesising drug-carrying coating for fast and slow release and fabricating
thin coatings with high strength [121,123,124]. The materials involved in the synthesis of composite
coatings by this method include polymers, peptides, nanoparticles, ceramic and metals.

Plasma spraying is a method that has been used to coat medical implants in the past and is still
being used. The process involved is the use of high temperature from an ionised inert gas to melt
ceramic or metal powders, which are sprayed on the substrate to be coated [66,125]. It is very common
to coat medical implants with HA using this method with the aim of increasing biocompatibility
and preventing corrosion [57,125]. However due to the brittleness and low adhesion force of the
HA formed from this method, plasma spraying could be combined with other techniques, such as
isostatic pressing, or the HA being fabricated could be reinforced with other materials, such as carbon
nanotubes [57,125,126]. As a whole, plasma spraying is considered to be cost-effective, and the method
has the ability to control the microstructure of coatings and make them have good properties [57,127].
Nonetheless, it has drawbacks, such as low adhesive strength, non-uniform coating and the induction
of changes in the microstructure of the coating.

Physical vapour deposition is an environmentally friendly coating technique, which is used to
deposit inorganic material of variable thickness and good adhesion strength on the required substrate
with the aim of providing good corrosion resistance [80,125,128]. The technique involves the deposition
of plasma metal ions on the substrate to be coated with the help of an electric field [80,129]. With
respect to the resulting coating, physical vapour deposition, PVD has been used in the synthesis of
composite coating for orthopaedics implants. Examples of such coatings are HA, diamond-like coating,
TiO2 and nano-silicon [80,128]. The weak link in this context is the low crystallinity of the resulting
coating and the high cost of the procedure [130].

The above-mentioned deposition techniques are continuously being researched, and many more
are being investigated with the aim of having the appropriate composite coating for the respective
implant or the required tissue engineering. This is a long process as so many aspects have to be taken
into consideration, ranging from mechanical properties to biological properties. Other aspects to be
considered are the feasibility, accessibility and economic aspects.

4. Future Trend

Various composite coatings have been magnificently put together by so many researchers in the
past. Trying to combat all possible problems from implants and in relation to tissue engineering has
been the centre of attraction. However, getting the recipe for the perfect biomaterial or composite
coating right is not simple and would require more extensive work. One of the solutions to addressing
this issue is the use of smart coatings. It is a coating that has at least one property that can be modified
when induced by stimuli generated by intrinsic or extrinsic factors, such as pH, stress, temperature,
electric and magnetic fields [113,131,132]. Smart composite coatings are being constantly studied
about in the medical world with different aims. Examples are drug-carrying coating and self-healing
coating [132,133].

In the field of drug delivery, TiO2 nanotubes have been considered to carry drugs for implants
and tissue engineering in different medical needs and deliver them when required by different types
of external stimuli, but some drawbacks need to be taken into consideration as well just in case, the
external stimuli do not reach the coating adequately, or the coating is not biocompatible [36,133,134].
Nanoparticle-involved composite coatings have been reviewed with the aim of acting as a scaffold for
smart tissue regeneration/repair, and, with respect to this review, composite materials like chondroitin
sulfate-reinforced collagen scaffolds, fibrin gel incorporating transforming growth factor beta-1 and
porous HA scaffolds combined with biodegradable poly(lactic-co-glycolic acid), PLGA microspheres
loading dexamethasone have been investigated [135].

The above-mentioned properties and materials are examples of where smart composite coatings
are heading. With the world heading towards smart technology, the smart coating could be considered
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as the solution to the issues faced by implants in the human body. The aim is to provide the necessary
properties as soon as contact is made while being able to combat expected problems as time goes by.

5. Summary

Composite coatings have significant importance in the world of orthopaedics both on the surface
of implants and scaffolds for tissue engineering. The components of the latter composite coatings
are selected, depending on the location where needed and the function they are expected to perform.
The fabrication methods are selected, depending on the characteristic of the coatings required. Since
the biological reactions occur at a nano-level in the human body, nano-composite coatings have gained
more attention recently, and smart coatings have also been considered to be important in this field.
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