Preparation and Characterization of Montmorillonite/PEDOT-PSS and Diatomite/PEDOT-PSS Hybrid Materials. Study of Electrochemical Properties in Acid Medium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Clay/PEDOT-PSS Hybrid Materials by Electrochemical Polymerization
2.3. Physico-Chemical Characterization of the Clays and Clay/PEDOT-PSS Hybrid Materials
2.4. Electrochemical Characterization and Diclofenac Electro-Oxidation
3. Results
3.1. Physico-Chemical Characterization of the Clays
Electrochemical Characterization of Clay-Modified Electrodes
3.2. Preparation and Characterization of Clay/PEDOT-PSS Hybrid Materials
3.2.1. Electrochemical Polymerization
3.2.2. Physico-chemical Characterization
3.2.3. Electrochemical Characterization
3.3. Electro-Oxidation of Diclofenac on Clay/PEDOT-PSS Hybrid Materials
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zoveidavianpoor, M. Current Topics in the Utilization of Clay in Industrial and Medical Applications; IntechOpen: London, UK, 2018; ISBN 978-1-78923-729-0. [Google Scholar] [CrossRef]
- Mukherjee, S. The Science of Clays. Applications in Industry, Engineering and Environment; Springer: Dordrecht, The Netherlands, 2013; ISBN 978-94-007-6682-2. [Google Scholar] [CrossRef]
- Whitworth, T.M. Clay minerals: Ion exchange. In Encyclopedia of Geochemistry, 1st ed.; Marshall, C.P., Fairbridge, R.W., Eds.; Springer: Dordrecht, The Netherlands, 1998; pp. 85–87. ISBN 978-1-4020-4496-0. [Google Scholar]
- Gupta, S.S.; Bhattacharyya, K.G. Adsorption of metal ions by clays and inorganic solids. RSC Adv. 2014, 4, 28537–28586. [Google Scholar] [CrossRef]
- Lazaratou, C.V.; Vayenas, D.V.; Papoulis, D. The role of clays, clay minerals and clay-based materials for nitrate removal from water systems: A review. Appl. Clay Sci. 2020, 185, 105377. [Google Scholar] [CrossRef]
- Uddin, M.K. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem. Eng. J. 2017, 308, 438–462. [Google Scholar] [CrossRef]
- Awad, A.M.; Shaikh, S.M.R.; Jalab, R.; Gulied, M.H.; Nasser, M.S.; Benamor, A.; Adham, S. Adsorption of organic pollutants by natural and modified clays: A comprehensive review. Sep. Purif. Technol. 2019, 228, 115719. [Google Scholar] [CrossRef]
- Dulio, V.; van Bavel, B.; Brorström-Lundén, E.; Harmsen, J.; Hollender, J.; Schlabach, M.; Slobodnik, J.; Thomas, K.; Koschorreck, J. Emerging pollutants in the EU: 10 years of NORMAN in support of environmental policies and regulations. Environ. Sci. Eur. 2018, 30, 1–13. [Google Scholar] [CrossRef]
- Rajeshwar, K.; Ibanez, J.G. Environmental Electrochemistry: Fundamentals and Applications in Pollution Abatement; Academic Press Inc.: San Diego, CA, USA, 1997; ISBN 978-0-12-576260-1. [Google Scholar]
- Rodriguez-Narvaez, O.M.; Peralta-Hernandez, J.M.; Goonetilleke, A.; Bandala, E.R. Treatment technologies for emerging contaminants in water: A review. Chem. Eng. J. 2017, 323, 361–380. [Google Scholar] [CrossRef] [Green Version]
- Sirés, I.; Brillas, E. Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: A review. Environ. Int. 2012, 45, 212–229. [Google Scholar] [CrossRef]
- Kibria, G.; Hossain, S. Electrical resistivity of compacted clay minerals. Environ. Geotech. 2017, 6, 1–8. [Google Scholar] [CrossRef]
- Ruiz-Hitzky, E.; Aranda, P.; Darder, M.; Rytwo, G. Hybrid materials based on clays for environmental and biomedical applications. J. Mater. Chem. 2010, 20, 9306–9321. [Google Scholar] [CrossRef]
- Ruiz-Hitzky, E.; Aranda, P.; Darder, M. Hybrid and Biohybrid Materials Based on Layered Clays. In Tailored Organic-Inorganic Materials, 1st ed.; Brunet, E., Colón, J.L., Clearfield, A., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; pp. 245–298. ISBN 9781118792223. [Google Scholar] [CrossRef]
- Fang, F.F.; Choi, H.J.; Joo, J. Conducting polymer/clay nanocomposites and their applications. J. Nanosci. Nanotech. 2008, 8, 1559–1581. [Google Scholar] [CrossRef]
- Gangopadhyay, R.; De, A. Conducting Polymer Nanocomposites: A Brief Overview. Chem. Mater. 2000, 12, 608–622. [Google Scholar] [CrossRef]
- Baldissera, A.F.; Ferreira, C.A. Clay-Based Conducting Polymer Nanocomposites. In Conducting Polymer Hybrids; Springer Series on Polymer and Composite, Materials; Kumar, V., Kalia, S., Swart, H.C., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 143–164. [Google Scholar] [CrossRef]
- Zhan, C.; Yu, G.; Lu, Y.; Wang, L.; Wujcik, E.; Wei, S. Conductive polymer nanocomposites: A critical review of modern advanced devices. J. Mater. Chem. C 2017, 5, 1569–1585. [Google Scholar] [CrossRef]
- Saad, A.; Jlassi, K.; Omastová, M.; Chehimi, M.M. Clay/Conductive Polymer Nanocomposites. In Clay-Polymer Nanocomposites; Jlassi, K., Chehimi, M.M., Thomas, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 199–237. [Google Scholar] [CrossRef]
- Heywang, G.; Jonas, F. Poly(alkylenedioxythiophene)s—new, very stable conducting polymers. Adv. Mater. 1992, 4, 116–118. [Google Scholar] [CrossRef]
- Groenendaal, L.; Jonas, F.; Freitag, D.; Pielartzik, H.; Reynolds, J.R. Poly(3,4-ethylenedioxythiophene) and Its Derivatives: Past, Present, and Future. Adv. Mater. 2000, 12, 481–494. [Google Scholar] [CrossRef]
- Skotheim, T.A.; Reynolds, J.R. Handbook of Conducting Polymers. Conjugated Polymers: Processing and Applications, 3rd ed.; CRC Press: Boca Ratón, FL, USA, 2006; ISBN 9781420043617. [Google Scholar]
- Castagnola, V.; Bayon, C.; Descamps, E.; Bergaud, C. Morphology and conductivity of PEDOT layers produced by different electrochemical routes. Synth. Met. 2014, 189, 7–16. [Google Scholar] [CrossRef]
- Yu, Y.-H.; Jen, C.-C.; Huang, H.-Y.; Wu, P.-C.; Huang, C.-C.; Yeh, J.-M. Preparation and properties of heterocyclically conjugated poly(3-hexylthiophene)–clay nanocomposite materials. J. Appl. Polym. Sci. 2004, 91, 3438–3446. [Google Scholar] [CrossRef]
- Kuila, B.K.; Nandi, A.K. Physical, Mechanical, and Conductivity Properties of Poly(3-hexylthiophene)−Montmorillonite Clay Nanocomposites Produced by the Solvent Casting Method. Macromolecules 2004, 37, 8577–8584. [Google Scholar] [CrossRef]
- Letaïef, S.; Aranda, P.; Fernandez-Saavedra, R.; Margeson, J.C.; Detellier, C.; Ruiz-Hitzky, E. Poly(3,4-ethylenedioxythiophene)–clay nanocomposites. J. Mater. Chem. 2008, 18, 2227–2233. [Google Scholar] [CrossRef]
- Macêdo-Fonsêca, J.C.; Silva, I.S.; Souto-Maior, R.M. Poly(3-hexadecylthiophene)/montmorillonite clay nanocomposites: Influence of preparation and type of clay on their structures. Synth. Met. 2009, 159, 2215–2218. [Google Scholar] [CrossRef]
- Hatamzadeh, M.; Jaymand, M.; Massoumi, B. Graft copolymerization of thiophene onto polystyrene synthesized via nitroxide-mediated polymerization and its polymer − clay nanocomposite. Polym. Int. 2013, 63, 402–412. [Google Scholar] [CrossRef]
- Khalfaoui-Boutoumi, N.; Boutoumi, H.; Khalaf, H.; David, B. Synthesis and characterization of TiO2–Montmorillonite/Polythiophene-SDS nanocomposites: Application in the sonophotocatalytic degradation of rhodamine 6G. Appl. Clay Sci. 2013, 80, 56–62. [Google Scholar] [CrossRef]
- Han, Y.; Lu, Y. Preparation and characterization of exfoliated organic montmorillonite/poly(3,4-ethyldioxythiophene) nanocomposites. J. Appl. Polym. Sci. 2009, 111, 2400–2407. [Google Scholar] [CrossRef]
- Sarioğlan, Ş. A Comparison Study on Conductive Poly(3,4-ethylenedioxythiophene) Nanocomposites Synthesized with Clay Type Montmorillonite and Organophilic Montmorillonite. Particul. Sci. Technol. 2012, 30, 68–80. [Google Scholar] [CrossRef]
- Ballav, N.; Biswas, M. A conducting nanocomposite via intercalative polymerisation of thiophene in montmorillonite clay. Synth. Met. 2004, 142, 309–315. [Google Scholar] [CrossRef]
- Rajapakse, R.M.G.; Higgins, S.; Velauthamurty, K.; Bandara, H.M.N.; Wijeratne, S.; Rajapakse, R.M.M.Y. Nanocomposites of poly(3,4-ethylenedioxythiophene) and montmorillonite clay: Synthesis and characterization. J. Compos. Mater. 2010, 45, 597–608. [Google Scholar] [CrossRef]
- Megherbi, A.; Meghabar, R.; Belbachir, M. Preparation and Characterization of Clay (Maghnite-H)/Poly(3,4-Ethylenedioxythiophene) Composites. J. Surf. Eng. Mater. Adv. Technol. 2013, 3, 21–27. [Google Scholar] [CrossRef]
- Senarathna, K.G.C.; Randiligama, H.M.S.P.; Rajapakse, R.M.G. Preparation, characterization and oxygen reduction catalytic activities of nanocomposites of Co(II)/montmorillonite containing polypyrrole, polyaniline or poly(ethylenedioxythiophene). RSC Adv. 2016, 6, 112853–112863. [Google Scholar] [CrossRef]
- Mäkiniemi, R.O.; Das, P.; Hönders, D.; Grygiel, K.; Cordella, D.; Detrembleur, C.; Yuan, J.; Walther, A. Conducting, Self-Assembled, Nacre-Mimetic Polymer/Clay Nanocomposites. ACS Appl. Mater. Interf. 2015, 7, 15681–15685. [Google Scholar] [CrossRef] [Green Version]
- Oriakhi, C.O.; Lerner, M.M. Poly(pyrrole) and poly(thiophene)/clay nanocomposites via latex-colloid interaction. Mater. Res. Bull. 1995, 30, 723–729. [Google Scholar] [CrossRef]
- Kuila, B.K.; Nandi, A.K. Structural Hierarchy in Melt-Processed Poly(3-hexyl thiophene)−Montmorillonite Clay Nanocomposites: Novel Physical, Mechanical, Optical, and Conductivity Properties. J. Phys. Chem. B 2006, 110, 1621–1631. [Google Scholar] [CrossRef]
- Kuila, B.K.; Nandi, A.K. Poly(3-dodecyl thiophene)—Organically modified montmorillonite clay nanocomposites: Influence of chain regioregularity and preparation condition on physical, mechanical, optical, and conductivity properties. J. Appl. Polym. Sci. 2009, 111, 155–167. [Google Scholar] [CrossRef]
- Ahmad, I.; Hussain, M.; Seo, K.-S.; Choa, Y.-H. Synthesis and characterization of polymer-nanoclay conductive nanocomposites. J. Appl. Polym. Sci. 2010, 116, 314–319. [Google Scholar] [CrossRef]
- Aradilla, D.; Estrany, F.; Azambuja, D.; Casas, M.; Puiggali, J.; Ferreira, C.A.; Alemán, C. Conducting poly(3,4-ethylenedioxythiophene)-montmorillonite exfoliated nanocomposites. Eur. Polym. J. 2010, 46, 977–983. [Google Scholar] [CrossRef]
- Aradilla, D.; Azambuja, D.; Estrany, F.; Casas, M.T.; Ferreira, C.A.; Alemán, C. Hybrid polythiophene–clay exfoliated nanocomposites for ultracapacitor devices. J. Mater. Chem. 2012, 22, 13110–13122. [Google Scholar] [CrossRef] [Green Version]
- Djelad, H.; Huerta, F.; Morallón, E.; Montilla, F. Modulation of the electrocatalytic performance of PEDOT-PSS by reactive insertion into a sol-gel silica matrix. Eur. Polym. J. 2018, 105, 323–330. [Google Scholar] [CrossRef]
- Lozano–Castelló, D.; Suárez–García, F.; Cazorla–Amorós, D.; Linares–Solano, A. Porous texture of carbons. In Carbons for Electrochemical Energy Storage and Conversion Systems; Beguin, F., Frackowiak, E., Eds.; CRC Press: Boca Ratón, FL, USA, 2010; pp. 115–162. ISBN 9781420053074. [Google Scholar]
- Gonzalez, L.; Agüero, A.; Quiles-Carrillo, L.; Lascano, D.; Montanes, N. Optimization of the Loading of an Environmentally Friendly Compatibilizer Derived from Linseed Oil in Poly(Lactic Acid)/Diatomaceous Earth Composites. Materials 2019, 12, 1627. [Google Scholar] [CrossRef] [Green Version]
- Weaver, C.E.; Pollard, L. The Chemistry of Clay Minerals; Elevier: Amsterdam, The Netherlands, 1973; Volume 15, ISBN 0-444-41043-0. [Google Scholar]
- Stoermer, E.F.; Smol, J.P. The Diatoms: Applications for the Environmental and Earth Sciences, 2nd ed.; Cambridge University Press: Cambridge, UK, 2010; ISBN 978-0521509961. [Google Scholar]
- Grosvenor, A.P.; Kobe, B.A.; Biesinger, M.C.; McIntyre, N.S. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interf. Anal. 2004, 36, 1564–1574. [Google Scholar] [CrossRef]
- Liu, S.; Yao, K.; Fu, L.H.; Ma, M.G. Selective synthesis of Fe3O4, γ-Fe2O3, and α-Fe2O3 using cellulose-based composites as precursors. RSC Adv. 2016, 6, 2135–2140. [Google Scholar] [CrossRef]
- Zhang, X.; An, L.; Yin, J.; Xi, P.; Zheng, Z.; Du, Y. Effective Construction of High-quality Iron Oxy-hydroxides and Co-doped Iron Oxy-hydroxides Nanostructures: Towards the Promising Oxygen Evolution Reaction Application. Sci. Rep. 2017, 7, 43590. [Google Scholar] [CrossRef] [Green Version]
- Brindley, G.W.; Brown, G. Crystal Structures of Clay Minerals and Their X-Ray Identification; Mineralogical Society of Great Britain and Ireland: London, UK, 1980; ISBN 9780903056373. [Google Scholar] [CrossRef] [Green Version]
- Mookherjee, M.; Redfern, S.A.T.; Zhang, M. Thermal response of structure and hydroxyl ion of phengite-2M1: An in situ neutron diffraction and FTIR study. Eur. J. Mineral. 2001, 13, 545–555. [Google Scholar] [CrossRef]
- Marsh, A.; Heath, A.; Patureau, P.; Evernden, M.; Walker, P. Alkali activation behaviour of un-calcined montmorillonite and illite clay minerals. Appl. Clay Sci. 2018, 166, 250–261. [Google Scholar] [CrossRef]
- Alekseeva, O.; Noskov, A.; Grishina, E.; Ramenskaya, L.; Kudryakova, N.; Ivanov, V.; Agafonov, A. Structural and Thermal Properties of Montmorillonite/Ionic Liquid Composites. Materials 2019, 12, 2578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhattacharyya, K.G.; Gupta, S.S. Kaolinite, montmorillonite, and their modified derivatives as adsorbents for removal of Cu(II) from aqueous solution. Sep. Purif. Technol. 2006, 50, 388–397. [Google Scholar] [CrossRef]
- Gupta, S.S.; Bhattacharyya, K.G. Immobilization of Pb(II), Cd(II) and Ni(II) ions on kaolinite and montmorillonite surfaces from aqueous medium. J. Environ. Manag. 2008, 87, 46–58. [Google Scholar] [CrossRef]
- Samoilovich, M.I.; Rinkevich, A.B.; Bovtun, V.; Belyanin, A.F.; Kempa, M.; Nuzhnyy, D.; Tsvetkov, M.Y.; Kleshcheva, S.M. Optical, Magnetic, and Dielectric Properties of Opal Matrices with Intersphere Nanocavities Filled with Crystalline Multiferroic, Piezoelectric, and Segnetoelectric Materials. Russ. J. Gen. Chem. 2013, 83, 2132–2147. [Google Scholar] [CrossRef]
- Pavía, H.; Velosa, A.; Cachim, P.; Ferreira, V.M. Effect of pozzolans with different physical and chemical characteristics on concrete properties. Mater. Construcc. 2016, 66, e083. [Google Scholar] [CrossRef]
- Zehhaf, A.; Benyoucef, A.; Berenguer, R.; Quijada, C.; Taleb, S.; Morallón, E. Lead ion adsorption from aqueous solutions in modified Algerian montmorillonites. J. Therm. Anal. Calorim. 2012, 110, 1069–1077. [Google Scholar] [CrossRef] [Green Version]
- Sing, K.S.W.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquerol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications, 2nd ed.; John Wiley& Sons: New York, NY, USA, 2001; ISBN 0-471-04372-9. [Google Scholar]
- Nicholson, R.S. Theory and Application of Cyclic Voltammetry for Measurement of Electrode Reaction Kinetics. Anal. Chem. 1965, 37, 1351–1355. [Google Scholar] [CrossRef]
- Buffle, J.; Zhang, Z.; Startchev, K. Metal Flux and Dynamic Speciation at (Bio)interfaces. Part I: Critical Evaluation and Compilation of Physicochemical Parameters for Complexes with Simple Ligands and Fulvic/Humic Substances. Environ. Sci. Technol. 2007, 41, 7609–7620. [Google Scholar] [CrossRef]
- Djelad, H.; Benyoucef, A.; Morallón, E.; Montilla, F. Reactive Insertion of PEDOT-PSS in SWCNT@Silica Composites and its Electrochemical Performance. Materials 2020, 13, 1200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bobacka, J.; Lewenstam, A.; Lvaska, A. Electrochemical impedance spectroscopy of oxidized poly(3,4-ethylenedioxythiophene) film electrodes in aqueous solutions. J. Electroanal. Chem. 2000, 489, 17–27. [Google Scholar] [CrossRef]
- López-Bernabeu, S.; Huerta, F.; Morallón, E.; Montilla, F. Direct Electron Transfer to Cytochrome c Induced by a Conducting Polymer. J. Phys. Chem. C 2017, 121, 15870–15879. [Google Scholar] [CrossRef] [Green Version]
- Farah, A.A.; Rutledge, S.A.; Schaarschmidt, A.; Lai, R.; Freedman, J.P.; Helmy, A.S. Conductivity enhancement of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) films post-spincasting. J. Appl. Phys. 2012, 112, 113709. [Google Scholar] [CrossRef]
- Du, F.P.; Cao, N.N.; Zhang, Y.F.; Fu, P.; Wu, Y.G.; Lin, Z.D.; Shi, R.; Amini, A.; Cheng, C. PEDOT:PSS/graphene quantum dots films with enhanced thermoelectric properties via strong interfacial interaction and phase separation. Sci. Rep. 2018, 8, 6441. [Google Scholar] [CrossRef] [Green Version]
- Santos, B.P.S.; Arias, J.J.R.; Albuquerque, L.S.; da Veiga, A.G.; Furtado, J.G.M.; Ribeiro, A.C.; Silva, L.A.F.; Bendinelli, E.V.; Rocco, M.L.M.; Valaski, R.; et al. An investigation on the effect of the monomer/catalyst ratio in the electronic properties of poly(3-hexylthiophene) using XPS, REELS and UPS techniques. J. Electron Spectros. Relat. Phenom. 2019, 234, 27–33. [Google Scholar] [CrossRef]
- Zalka, D.; Kovács, N.; Szekeres, K.; Újvári, M.; Vesztergom, S.; Eliseeva, S.; Kondratiev, V.; Láng, G.D. Determination of the charge transfer resistance of poly(3,4-ethylenedioxythiophene)-modified electrodes immediately after overoxidation. Electrochim. Acta 2017, 247, 321–332. [Google Scholar] [CrossRef] [Green Version]
X-Ray Fluorescense | N2 Adsorption Isotherms | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Atomic Percentage (%) | SBET | V0.995 | Vmicro | Vmeso | |||||||||
O | Si | Al | Ca | Mg | Sr | Na | K | Fe | m2/g | cm3/g | cm3/g | cm3/g | |
Mont | 50.6 | 37.4 | 6.6 | 0.4 | 0.8 | 0.0 | 0.2 | 1.8 | 1.5 | 256 | 0.45 | 0.09 | 0.36 |
Diat | 46.4 | 33.2 | 0.6 | 18.2 | 0.3 | 0.3 | 0.2 | 0.2 | 0.3 | 15 | 0.05 | 0.01 | 0.06 |
Electrode | PEDOT-PSS Loading | jox | Eox | ∆Epeak | ||
---|---|---|---|---|---|---|
μg/cm2 | A/cm² | V | V | cm/s | ||
GC | - | 2.08 × 10−4 | 0.5419 | 148.5 | 0.23 | 4.67 × 10−4 |
GC/PEDOT-PSS | 562 | 1.01 × 10−3 | 0.4889 | 65.4 | 4.60 | 9.25 × 10−3 |
GC/Mont | - | 2.50 × 10−4 | 0.5235 | 116.5 | 0.40 | 7.94 × 10−4 |
GC/Mont/PEDOT-PSS | 542 | 6.10 × 10−4 | 0.4942 | 71.0 | 2.20 | 4.42 × 10−3 |
GC/Diat/PEDOT-PSS | 347 | 5.95 × 10−4 | 0.5028 | 84.2 | 0.98 | 1.97 × 10−3 |
Atomic % | |||||||||
---|---|---|---|---|---|---|---|---|---|
O | Si | Al | Fe | C | S | S(PSS) | S(EDOT) | S(PSS)/ S(EDOT) | |
Mont | 58.4 | 33.0 | 5.0 | 0.7 | 2.9 | - | - | - | - |
Mont/PEDOT-PSS | 33.7 | 47.0 | 3.3 | 0.4 | 12.6 | 2.9 | 2.6 | 0.3 | 8.2 |
Mont/PEDOT-PSS(etch) | 35.8 | 50.1 | 4.3 | 0.5 | 7.0 | 2.4 | 1.9 | 0.5 | 4.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiari, M.; Berenguer, R.; Montilla, F.; Morallón, E. Preparation and Characterization of Montmorillonite/PEDOT-PSS and Diatomite/PEDOT-PSS Hybrid Materials. Study of Electrochemical Properties in Acid Medium. J. Compos. Sci. 2020, 4, 51. https://doi.org/10.3390/jcs4020051
Kiari M, Berenguer R, Montilla F, Morallón E. Preparation and Characterization of Montmorillonite/PEDOT-PSS and Diatomite/PEDOT-PSS Hybrid Materials. Study of Electrochemical Properties in Acid Medium. Journal of Composites Science. 2020; 4(2):51. https://doi.org/10.3390/jcs4020051
Chicago/Turabian StyleKiari, Mohamed, Raúl Berenguer, Francisco Montilla, and Emilia Morallón. 2020. "Preparation and Characterization of Montmorillonite/PEDOT-PSS and Diatomite/PEDOT-PSS Hybrid Materials. Study of Electrochemical Properties in Acid Medium" Journal of Composites Science 4, no. 2: 51. https://doi.org/10.3390/jcs4020051
APA StyleKiari, M., Berenguer, R., Montilla, F., & Morallón, E. (2020). Preparation and Characterization of Montmorillonite/PEDOT-PSS and Diatomite/PEDOT-PSS Hybrid Materials. Study of Electrochemical Properties in Acid Medium. Journal of Composites Science, 4(2), 51. https://doi.org/10.3390/jcs4020051