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Abstract: Recently, various environmental-friendly materials have been investigated and developed,
especially composites of polylactic acid (PLA) and plant fibers. This paper investigates the effects of
pulp fiber (PF) and epoxidized Tung oil (ETO) content on the properties of biocomposites, based on
polylactic acid. The bleached pulp fiber reinforced PLA (PLA/PF) composites with 10–50 wt% fiber
contents and 0–15% epoxidized Tung oil contents (with a certain number of fiber) were prepared
in an internal mixer (Plastograph® EC) at 150 ◦C. The mechanical properties of PLA/PF composites
were improved significantly. The pulp fiber reinforced PLA composites, with the fiber content of
30 wt%, were found to have the highest mechanical properties. The tensile and flexural properties of
PLA/Tung oil-soaked-pulp fiber composites were higher than those of PLA/Tung oil unsoaked pulp
fiber composites. In addition, the degradation temperature of PLA-based composites decreased after
adding more pulp fiber. The pulp fibers were well-dispersed in the PLA matrix with the content up to
30 wt%. The interaction between pulp fiber and PLA matrix improved by the addition of epoxidized
Tung oil. Epoxidized Tung oil also improved tensile and flexural strength of composite materials
when it was added with a number of below 10% of fiber.
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1. Introduction

Over the last few decades, the natural fiber, reinforced polymer composites, have rapidly grown
and are now widely used in the academic and industrial applications due to the advantages of natural
fibers, such as low density, lightweight, renewability, high specific strength, enhanced energy recovery,
good thermal properties, non-toxicity, low cost and biodegradability [1]. The natural fiber reinforced
composites are used in various applications, such as transportation, building and construction materials,
packaging, consumer products, etc. due to their environmentally-friendly properties [2]. Natural
fibers, which are commonly used as reinforcement for polymer composites, include abaca, jute, kenaf,
coir, cotton, bamboo, flax, hemp, ramie, sisal, banana, etc. [3,4]. Despite the advantages, natural
fibers, used as reinforcement agents, also have some disadvantages, such as high moisture absorbtion,
poor wettability, and incompatibility with polymeric matrices [1]. Recently, chemical treatment
methods have been used to improve the compatibility between natural fibers and polymer matrix,
such as alkaline treatment, coupling agents (silanes, acetylation, graft copolymerization), bleaching,
enzyme, etc. This increases the interaction between fibers and polymer matrix, as well as improves the
mechanical properties of the composites.

One of the most widely investigated polymers to replace petroleum-based polymers is PLA because
of its favorable properties, namely good mechanical properties, biocompatibility, biodegradability,
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and especially the use of the same technological equipment as what used for conventional fiber
reinforced composite materials. In addition, PLA can be made from renewable resources, for example,
maize, sugarbeet, rice, etc. In the recent years, many studies concentrate on the performance of PLA
with different natural fibers, such as flax fiber [5–7], jute [8,9], kenaf [10–12], abaca fiber [13] and
hemp [14]. Pulp fibers are also a good option for reinforcement composites because of their availability,
uniform quality and cheaper price than agro fibers. Zhaozhe Y. et al. found that the tensile and flexural
modulus of the PLA composites with wood fiber and pulp fiber were greater than those of pure PLA,
and pulp fiber improved the properties of the composites better than wood fiber [15]. Kirsi Immoen
et al. fabricated PLA composite with softwwood kraft pulp using epoxidized linseed oil (ELO) as
a plasticizer and a platicizer-coupling agent. The results showed that ELO improved, not only the
interaction between pulp fiber and PLA, but also the tensile strength of composites by using at 5–8%
content of ELO [16]. Heidi Peltola et al. found that epoxidized linseed oil, not only promotes the
adhesion of PLA wood pulp, but also reduces fiber loss during melting processing [17]. Research also
showed that unbleached fibers had a stronger reinforcement effect than bleached fibers.

However, hydrophilic cellulose fibers are difficult to disperse equally and to interact with the PLA
matrix. A commonly used method to increase the interaction between fiber and polymer is adding
plasticizers, especially vegetable oil-based plasticizers because of its availability, biodegradability,
and low cost. Among vegetable oils, Tung oil is widely used in the industry, especially in the field of
paints and plastics due to its high heat resistance, water resistance and salinity tolerance. Moreover,
as one of oil with the highest iodine index [18], Tung oil promises good results when used as a plasticizer
for PLA/pulp fiber composites. The aim of this study is to study the effects of pulp fiber and epoxidized
Tung oil content on the properties of biocomposites, based on polylactic acid.

2. Materials and Methods

2.1. Materials

Poly (lactic acid) (PLA) resin produced by SMBEST Pvt. Ltd. (Busan, Korea) was used as the
matrix material. Its density was 1.2–1.31 g/cm3, and its melt flow index (MFI) was below 5 g/10 min
at 5 kg/190 ◦C. In terms of the reinforcement materials, bleached pulp fibers were initially supplied
by An Hoa Paper Joint Stock Company (Tuyen Quang, Viet Nam) then cut to the size of 3–4 mm.
The properties of bleached pulp fibers were listed in Table 1.

Table 1. The properties of bleached pulp fibers.

Properties Value

α-cellulose, % 96.7 ± 0.5

Lignin, % 0.27 ± 0.08

Viscosity, ml/g 655

Ash, % 0.28 ± 0.05

Tung oil was supplied by Vietnam Tung oil company limited (Ha Noi, Viet Nam). The properties
of Tung oil were listed in Table 2. Amberlite® IRC120 H, hydrogen form 15 wt% to oil (Sigma),
H2O2 (Sigma) and acetic acid (Sigma) were used to modified Tung oil.
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Table 2. The properties of Tung oil.

Properties Value

Density (at 20 ◦C) 0.920–0.945

Acid value 1.4

Iodine value 149.5–170.6

Saponification value 193.4–196.7

To prepare epoxidized Tung oil, Tung oil was stirred in a flask and heated to 55 ◦C in the presence
of Amberlite® IRC120 Has the catalyst with a uniform agitation under the constant stirring speed of
1600 rpm. A mixture of H2O2 and acetic acid was dropwise added into the mixture of Tung oil and
Amberlite® IRC120 at a constant rate for 2 h. The reaction time was 5 h and the ratio of Tung oil/acid
acetic/H2O2 was 1.0/0.5/0.5. At the end of the reaction, the mixture was cooled and centrifuged at least
5 min under the rotation speed of 2000 rpm. The oil phase, separated from the aqueous phase and the
catalyst, was washed with distilled water until acid free, and evaporated for at least 1 h under the
vacuum of about 40 mbar at 60 ◦C [19]. Epoxy value was determined by titration method according to
TY-6-10-722-72. Epoxy value of epoxidized Tung oil was 6.8%.

2.2. Composite Preparation

The PLA resin and pulp fibers were dried at 80 ◦C for 5 h under vacuum. PLA/pulp fiber
composites were manufactured according to two methods (Figure 1): (1) Pulp fiber (NPF), epoxidized
Tung oil and PLA were mixed directly; (2) epoxidized Tung oil soaked pulp fibers (SPF) were mixed
with PLA (Sce. To soak the pulp fibers with epoxidized Tung oil, epoxidized Tung oil was dissolved in
methyl ethyl ketone (ratio of 1/20) and sprayed onto the pulp. After that, the mixtures were dried in an
oven at 80 ◦C for 5 h for the reaction between Tung oil and pulp fiber to take place.
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Figure 1. Two fabricating methods for Poly (lactic acid) (PLA)/pulp fiber (PF) composites.

The separated pulp fibers and epoxidized Tung oil or epoxidized Tung oil-soaked pulp fibers
were melt-blended with PLA resin in an internal mixer model Plastograph® EC (Duisburg, Germany)
at 150 ◦C with a rotor speed of 50 rpm for 6 min. The pulp fiber/PLA composites were compressed
and moulded into 3-mm-thick plates on a GoTech hot press at 170 ◦C at a pressure of 50 psi for
5 min. Moulded samples were cut into specimens according to ASTM D638 and ISO 178 to determine
tensile properties and flexural properties respectively. To study the effect of pulp fiber contents on the
properties of composite, the pulp fibers were adding into PLA with different fiber contents (0%, 10%,
20%, 30%, 40% and 50%) in the presence of epoxidized Tung oil (in amount of 10% of fiber). To study
the effect of pulp fiber contents on the properties of composite, the used epoxidized Tung oil contents
were 0%, 5%, 7.5%, 10%, 15%, respectively.
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2.3. Characterization of Composites

2.3.1. Mechanical Properties

Tensile test was determined by ASTM D638 at a crosshead speed of 50 mm/min by using Instron
5980 Testing Machine (Illinois Tool Works Inc., Norwood, MA, USA). Flexural test was carried out
on Instron 3382 (American) according to ISO 187. All the test samples were stabilized at a room
temperature for 24 h before testing. An average value of five tests was reported.

2.3.2. Scanning Electron Microscope (SEM)

The fracture surface morphology of the pulp fiber reinforced PLA composites was investigated by
using a scanning electron microscope SEM (JEOL 6490, Tokyo, Japan) at 15 kV. The fracture surface of
the samples was coated with platinum before examination.

2.3.3. Fourier Transfer Infrared Spectra (FTIR)

The IR spectra of composites was analysed with a Fourier transform infra-red (FTIR) spectrometer
(Nicolet Impact model 410, Nicolet, Madison, WI, USA). The equipment was operated with a resolution
of 4 cm−1 and scanning range from 4000 to 500 cm−1.

2.3.4. Thermogravimetry Analysis (TGA)

Thermogravimetry analysis was carried out at 10 ◦C/min heating rate in the air, from room
temperature to 550 ◦C on a thermogravimetry analysis system TGA209F1 (Netzch, Selb, Germany).

2.3.5. Differential Scanning Calorimetry (DSC)

Differential scanning calorimetry analysis was conducted using NETZSCH DSC 204F1 Phoneix
(Netzsch, Selb, Germany). The sample was heated at a rate of 10 ◦C/min from rt to 200 ◦C, followed by
cooling at 10 ◦C/min to rt.

3. Results and Discussions

3.1. Effect of Pulp Fiber Contents

3.1.1. Mechanical Properties of Composites

In this study, the samples were prepared with different pulp fiber contents (ranging from 0% to
50%), and the epoxidized Tung oil was fixed at 10% of fiber. The mechanical properties of neat PLA
and PLA/PF composites were presented in Table 3.

Table 3. Effect of pulp fiber contents on the mechanical properties of PLA/PF composites.

Composite
Fabrication

Method

Pulp Fiber
Contents

(%)

Tensile
Strength

(MPa)

Tensile Modulus
(MPa)

Elongation
at Break (%)

Flexural
Strength

(MPa)

Flexural
Modulus

(GPa)

0 40.67 ± 1.87 2187.64 ± 95.37 11.70 ± 0.41 95.0 ± 4.65 2.91 ± 0.12

Method 1

10 45.74 ± 2.03 2209.94 ± 86.22 11.63 ± 0.53 101.2 ± 4.91 3.14 ± 0.09

20 51.62 ± 1.94 2482.22 ± 101.05 5.11 ± 0.30 103.6 ± 5.02 3.86 ± 0.23

30 56.61 ± 2.11 2809.67 ± 90.43 5.24 ± 0.28 109.5 ± 6.36 4.54 ± 0.17

40 52.84 ± 1.21 3060.97 ± 98.12 2.54 ± 0.20 104.9 ± 4.23 5.09 ± 0.20

50 42.87 ± 1.53 3542.66 ± 88.96 2.14 ± 0.23 103.3 ± 5.64 5.93 ± 0.34
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Table 3. Cont.

Composite
Fabrication

Method

Pulp Fiber
Contents

(%)

Tensile
Strength

(MPa)

Tensile Modulus
(MPa)

Elongation
at Break (%)

Flexural
Strength

(MPa)

Flexural
Modulus

(GPa)

Method 2

10 46.34 ± 2.24 2316.46 ± 102.68 11.71 ± 0.39 102.2 ± 6.15 3.21 ± 0.25

20 52.88 ± 1.96 2502.19 ± 93.14 5.26 ± 0.25 105.0 ± 5.28 4.02 ± 0.29

30 59.32 ± 2.35 3043.54 ± 96.52 5.13 ± 0.31 114.7 ± 3.67 4.97 ± 0.18

40 55.45 ± 2.41 3390.27 ± 99.45 2.64 ± 0.18 108.8 ± 4.82 5.85 ± 0.10

50 50.28 ± 2.07 3751.38 ± 92.47 2.23 ± 0.24 106.5 ± 5.26 6.18 ± 0.32

It can be seen that the tensile strength of neat PLA is lower than that of PLA/PF composites.
The tensile strength of PLA/PF composites increased significantly by increasing the percentage of pulp
fiber content up to 30 wt% and then decreased by further addition of pulp fiber. When the pulp fiber
contents were from 10 to 30%, the tensile strength of the composites increased from 45.74 MPa to
56.61 MPa (for PLA/NPF composites) and to 59.32 (for PLA/SPF composites). The increase of tensile
modulus of PLA/PF composites was in proportion to the increase of pulp fiber content. These revealed
that the addition of pulp fibers into PLA matrix provided effective reinforcement. This was because
the stress was expected to transfer from the matrix to the strong fiber. Huda M. S. et al. suggested the
better the alignment of the fibers, the higher the strength value [20]. However, when the pulp fiber
was added to more than 30%, the tensile properties of composite decreased. This might be due to the
poor dispersion of fiber into the PLA matrix at higher pulp content. This result was consistent with the
results of Jin Qian et al. for-cotton fiber/PLA composites [21]. However, Zhaozhe Yang et al. found that
the tensile strength of both PLA/pulp fiber and PLA/wood fiber composites decreased with the increase
of fiber content [15]. The results also showed that the tensile strength and modulus of composites,
with untreated or soaked pulp fibers, were not significantly different with a fiber content of less than
30%, but those of composites, containing soaked pulp fibers, were higher than those of composites
containing untreated pulp fibers. This might be due to the fact that epoxidized Tung oil-treated pulp
fibers were more evenly dispersed in PLA matrix, and Tung oil improved the interaction between PLA
matrix and pulp fiber. The chemical interaction mechanism among epoxidized vegetable oil, PLA and
natural fiber was proposed by Buong Woei Chieng et al. [22] (Figure 2) and Omid Nabinejad et al. [23]
(Figure 3).
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Elongation at the break of the PLA/PF composites was also tested and shown in Table 3.
The elongation at break of composites decreased as the fiber content in the composites increased.

According to the results, the flexural modulus of the composites increased significantly by
increasing the pulp fiber content, while the flexural strength of the composite had non-significant
change. However, both the flexural strength and flexural modulus of the composites were higher than
that of the neat PLA. This could be explained that the addition of pulp fiber promoted the nucleation and
crystallization of PLA matrix, so that the flexural modulus of the composites improved. This indicated
that the pulp fiber acted as a rigid filler, which increased the stiffness of the composites. Similarly to
the tensile properties, the flexural strength and modulus of PLA/SPF composites were slightly higher
than that of PLA/NPF composites. When the content of pulp fiber was 30%, the flexural strength of
PLA/NPF and PLA/SPF composites reached 109.5 and 114.7 Mpa respectively, which increased by
15.3% and 20.7% compared with the pure PLA. This result was consistent with the results of Buket
Okutan Baba and Ugur Özmen for chicken feather/PLA composites [24].

3.1.2. Morphology Observation

Figure 4 showed the fractured surfaces morphologies of PLA/NPF composites. As can be seen in
Figure 4, there was a difference in the adhesion between NPF fiber and PLA matrix. At the lower fiber
content, the voids between PLA matrix and NPF fiber were invisible. The composite containing 30% of
pulp fiber began to show voids between PLA matrix and NPF fiber. When the fiber content exceeded
30%, the fiber breakages and the voids can be observed more clearly. The NPF fibers were pulled out
from the PLA matrix, and the surface of PF fiber was not wrapped by PLA matrix. This suggested
a poor adhesion between NPF fiber and PLA matrix.

Figure 5 showed that when treating pulp fiber with epoxidized Tung oil, the bonds between fibers
and the PLA improved more significantly, compared to the untreated fibers. Even at 10% of fiber
content, it was difficult to distinguish pulp fibers and PLA because the pulp fibers was covered by PLA.
At 40 and 50% of fiber content, the gaps and holes between the SPF and PLA matrix can be observed.
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3.1.3. Fourier Transfer Infrared Spectra

The FTIR spectra of pulp fiber, ETO, PLA, PLA/SPF composites with 10, 30 and 50% SPF were
presented in Figure 6.
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Figure 6. The FTIR spectra of pulp fiber, ETO, PLA, PLA/SPF composites with 10% SPF, 30 SPF and
50% SPF.

In IR spectrum of ETO, the peak at 1642 cm−1 which was assigned for C=C disappeared. Instead
there was appearance of a peak at 824 cm−1 which was assigned for C-O in epoxy ring [25]. This indicated
that epoxidation of Tung oil had occurred. The IR spectrum of the pulp fiber appeared as a peak
at 3445 cm−1, which was assigned for O-H stretching vibration. This peak of PLA/SPF composites
increased by increasing SPF content. A peak at 1771 cm−1, which was assigned for C=O group in
PLA and ETO [16], also increased by increasing SPF content. This might be due to the increase of
SPF content means that the ETO content in the composite also increased, so the concentration of C=O
group increased.

3.1.4. Differential Scanning Calorimetry

The thermal properties of the composites with different SPF fiber contents were investigated by
Differential Scanning Calorimetry (DSC). The DSC results for PLA, PLA/SPF composite were listed in
Table 4.

Table 4. Differential Scanning Calorimetry (DSC) results of PLA/SPF composites.

Soaked Pulp Fiber Contents (%) Tg (◦C) Tm (◦C) Tc (◦C)

0 56.2 148.1 86.4

10 56.2 147.7 88.8

20 54.8 146.5 -

30 55.0 146.8 -

40 53.5 146.9 -

50 50.6 150.3 -

The results showed that when the fiber content was 10-30%, the glass transition (Tg) temperature
of PLA in the composite was almost insignificantly as compared to that of neat PLA. This indicated
that there was no restriction on the mobility of the PLA chains when adding pulp fiber. Espinach
et al. [26] also observed the same phenomenon when adding 20–25% of bleached kraft soft wood
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to PLA matrix. However, when the fiber content exceeded 30%, the glass transition temperature of
composites decreased.

The melting temperature (Tm) of PLA in the composite, containing 10% fiber, was quite similar to
that of neat PLA, but the crystallization temperature (Tc) increased slightly. Meanwhile, at the fiber
content of 20–50%, the melting temperature of PLA decreased, compared to the composite, containing
10% of fiber and had no differences among samples. In addition, the crystallization temperature of
these samples was not observed, and this change in crystallinity reduced the melting temperature of
the composites.

3.1.5. Thermogravimetry Analysis

The thermal stability of PLA/SPF composites was investigated by thermogravimetry analysis
method, and the results are shown in Figure 7. Data analysis from the thermal analysis curves of these
composites was listed in Table 5.
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Table 5. Thermal analysis value of PLA and PLA/SPF composites.

Soaked Pulp Fiber Contents (%) T5 (◦C) T25 (◦C) T50 (◦C) Weight Loss at 450 ◦C (%)

SPF 314.6 335.9 346.3 74.37

0 313.9 371.2 394.0 78.98

10 302.8 365.0 389.3 80.61

20 310.5 360.9 393.2 77.29

30 312.7 356.9 390.0 75.39

40 305.1 342.0 370.8 74.02

50 306.1 346.0 372.9 79.68

The pulp fiber decomposition process can be divided into 3 stages. The first stage was the process
of losing moisture at about 100 ◦C with about a 3% of weight loss. The second stage takes place at
about 280–410 ◦C with a mass loss of 63.6%. This weight-loss stage was due to the decomposition of the
main components of the fibers which took place mainly in amorphous regions [27]. This stage can be
the polymerization of hemicellulose [28] and the random cleavage of glycoside bonds in cellulose [29].



J. Compos. Sci. 2020, 4, 56 10 of 13

The results showed that TGA curves of PLA/SPF composites exhibited multiple steps.
The decomposition stage takes place at about 300–410 ◦C due to the decomposition of the PLA
polymer chains and the main components of pulp fibers. The stage at 410–480 ◦C is due to carbon
burning. The results in Table 5 also indicated that the degradation temperature of composites was
lower than that of neat PLA. The degradation temperature of PLA-based composites decreased by
increasing the SPF fiber content. It might be due to the degradation temperature of SPF fiber was lower
than that of neat PLA.

3.2. Effect of Epoxidized Tung Oil Contents

3.2.1. Mechanical Properties of Composites

In this study, the sample was prepared according to method 2 with different epoxidized Tung oil
contents (0–15%), but the ratio of PLA/pulp fiber was fixed at 70/30. Physical properties such as tensile
strength, flexural strength of PLA/SPF composites were measured to evaluated effect of epoxidized
Tung oil. Results of the mechanical tests were presented in Table 6.

Table 6. Mechanical properties of PLA/SPF composites with different percentages of epoxidized
Tung oil.

Epoxidized Tung Oil
Contents (%)

Tensile
Strength

(MPa)

Tensile Modulus
(MPa)

Elongation at
Break (%)

Flexural
Strength

(MPa)

Flexural
Modulus

(GPa)

0 48.05 ± 1.85 2403.11 ± 105.42 2.19 ± 0.08 98.3 ± 4.88 2.93 ± 0.12

5 50.52 ± 2.09 3219.22 ± 96.23 2.56 ± 0.23 102.1 ± 5.03 3.17 ± 0.15

7.5 52.28 ± 2.14 3094.93 ± 101.45 3.71 ± 0.40 103.2 ± 3.94 3.34 ± 0.09

10 59.32 ± 2.35 3043.54 ± 96.52 5.13 ± 0.31 114.7 ± 3.67 4.97 ± 0.18

15 54.03 ± 2.28 2667.19 ± 95.16 5.45 ± 0.30 105.8 ± 4.52 4.19 ± 0.16

The results showed that the mechanical properties of the composites with ETO, used as a plasticizer,
were higher than those without ETO. The tensile strength increased from 50.52 to 59.32MPa, elongation
at break increased from 2.56 to 5.13%, the flexural strength increased from 98.3 to 114.7MPa and flexural
modulus increased from 3.17 to 4.97 GPa when the ETO content increased from 5 to 10%, but the
tensile modulus decreased from 3219.22 to 3043.54 MPa. This indicated that the ETO improved the
mechanical properties of the composites, due to the fact that the ETO also acted as a plasticizer for
PLA, so it increased the flexibility of matrix and reduced its free surface energy. This had also been
proved by several other authors [30]. However, when the content of the ETO in fiber exceeded 15%,
both strength and modulus reduced because it made the material softer. This phenomenon was also
observed by Kirsi when using 12% of epoxidized linseed oil as a plasticizer for PLA/bleached softwood
kraft pulp composites [26].

3.2.2. Morphology Observation

The fracture surface morphology of the ETO soaked pulp fiber reinforced PLA composites with
different epoxidized Tung oil contents were presented in Figure 8.
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The results showed that the composite without ETO can experience clear gaps between fiber and
PLA. There was less phase separation between fiber and PLA when ETO was added to the number
of fiber of 5–7.5%. When the number of fiber in ETO content was 10%, it was found that the pulp
fibers showed more tight connections with PLA matrix. However, with ETO content with 15% of fiber,
it seemed that the links between the pulp fiber and PLA were weakened, and there were gaps between
the two surfaces.

4. Conclusions

This research suggested that pulp fiber could be successfully used as a reinforcement in PLA-based
composites. The tensile properties of PLA/PF composites firstly increased after adding the fiber,
and then decreased when the content of fiber was over 30%. With the addition of PF fiber, the flexural
modulus of PLA-based composites increased, but the flexural strength of them experienced no change.
An improvement in the mechanical properties was possibly caused by PF reinforcement, as well as the
efficient stress transfer between the PLA matrix and fiber. The PLA-based composite with 30% SPF
fiber had the optimal mechanical properties; the tensile strength, tensile modulus, flexural strength
and flexural modulus of this composite increased by 45.86%, 39.12%, 20.74%, and 70.79%, respectively,
when compared with those of the neat PLA. In addition, the thermal stability of the PLA/PF composites
decreased by the increase of the PF fiber.

The interaction between pulp fibers and PLA matrix improved, as the ETO content increased.
The tensile and flexural strength of the composite increased by adding ETO with the percentage of
5–10% content. The mechanical properties of composites reduced when the ETO content was high
(in amount of 15% of fiber) because ETO acted as a plasticizer for PLA.
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