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Abstract: In this work, disc-like hematite (Fe2O3) nanoparticles were prepared using a readily available
inexpensive earth material, ferruginous laterite, via a low-cost synthesis route. Prepared hematite
nanoparticles were characterized using X-Ray diffraction (XRD), inductively coupled plasma mass
spectroscopy (ICP-MS), particle size analyzer (PSA), Fourier transform infrared (FT-IR) spectroscopy,
scanning electron microscopy (SEM), and nitrogen adsorption-desorption analyzer. The performance
of hematite nanoparticles was evaluated as a heavy metal ion adsorbent. Batch adsorption experiments
were conducted to study the adsorption behaviour of Ni2+ and Cd2+ ions as a function of the amount
of adsorbent, contact time, and pH. Adsorption data fitted to the linearized Langmuir and Freundlich
kinetic models were compared and discussed. The correlation coefficient (R2) was used to determine
the best fit kinetic model. Our data fitted the Langmuir kinetic model well and the highest adsorption
efficiencies were found to be 62.5 mg/g for Ni2+ and 200 mg/g for Cd2+, respectively. Due to high
surface area, pore volume with active sites, and sorption capabilities, hematite nanoparticles can
be used as efficient and economical nano-adsorbents for the removal of Ni2+ and Cd2+ ions from
industrial wastewater.
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1. Introduction

Heavy metals are metallic elements or metalloids that have high atomic weights in the range of
63.5 and 200.6 g/mol and specific gravities greater than 5.0. Most heavy metals are toxic even at low
concentrations (<0.1 ppm) and non-biodegradable inside living organisms and hence bio-accumulate
through food chains [1–5]. They can cause severe health issues, such as irreversible kidneys, brain,
and nervous system damage, and consequently leading to cancer [2,6–12]. Heavy metals are also
extremely harmful to flora, fauna, and all anthropogenic life. Cadmium (Cd2+) and nickel (Ni2+)
are two of the most commonly found heavy metal ions in industrial effluents of textile, plastics,
paints, furniture processing, construction, electronics, petroleum smelting, alloy, and battery industries.
However, the treatment of Cd2+ and Ni2+ ions from industrial effluents is extremely costly and much
money is spent on removing these heavy metals around the globe [1–5].

Generally, an industrial effluent purification system should be efficient, simple,
environmentally-friendly, and economical. However, currently available purification systems for
removing heavy metals from industrial effluents are expensive and they use chemicals that in turn
release harmful substances into water streams during the treatment processes [3–7]. To solve this issue,
adsorption techniques have been introduced [1,5–7,13–25]. Among many sorbents reported, activated
carbon is widely studied for removing heavy metals from wastewater streams [14,25]. However, the use
of activated carbon produced from various sources in industrial effluent purifications is limited, due to
their high production costs [6,7,13]. Additionally, the weak physical interaction between activated
carbon and heavy metals has made it less effective [6,13].

Several low-cost materials including kaolinite [19], montmorillonite [19], burnt brick particles [20],
peat [21,22], maize cob [23], and rice husks [24] have been recently introduced for the removal
of heavy metals. The use of nanoparticles as adsorbents for removing heavy metals has gained
significant attention due to their unique chemical and physical properties as compared to bulk
materials [4,5,8,15–18,25]. However, the synthesis of many nanoparticle-based adsorbents requires
advanced techniques and expensive raw materials [1,8,13,16,17]. It is, therefore, of interest to synthesize
nanomaterials via simple methods utilizing low-cost raw materials.

Laterites are readily available, extensively distributed, and cheap natural earth materials that
can be potentially used as raw materials for synthesizing inorganic nanomaterials. In contrast to
many disputes about the definition of laterites, laterites can be simply explained as highly weathered
natural clay materials with high concentrations of iron or aluminum oxides [26,27]. Table 1 shows the
physical and chemical properties of natural laterites. Laterites are also comprised of large amounts
of quartz and kaolinite. There is also evidence that the early African tribes used laterites as a source
of iron [7]. Furthermore, most metal-based industries around the world use laterites as a source
of producing other elements such as aluminum, manganese, nickel, titanium, and chromium [28].
Laterites are widely utilized for construction and dwellings applications. Over the last few years,
the main application of laterites as bricks has been plummeting with the introduction of cheap building
materials such as cement blocks and metal sheets. Although there is a high potential of laterites to be
used in synthesizing value-added iron-based nanomaterials, limited work has been conducted so far.
Commonly studied iron-based nanomaterials include magnetite (Fe3O4) [29], goethite(α-FeOOH) [30],
and hematite(Fe2O3) [31–33]. Among those, hematite nanoparticles have been investigated for a
range of applications, including adsorption [18,34–37], water splitting [38,39], photochemical [40,41],
catalytic [40,42], and electrochemical [43,44] processes.

In the current work, we focus on the facile and economically feasible synthesis of disc-like
hematite nanoparticles using naturally abundant laterites. Here it is also reported the use of hematite
nanoparticles for their effective removal of Ni2+ and Cd2+ via the adsorption process.
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Table 1. Physical and chemical properties of natural laterites [26,27].

Chemical Composition Values (%) Engineering and Physical Properties Values

SiO2 21.55 pH 5.35
Al2O3 24.31 Specific gravity 2.69
Fe2O3 29.40 External surface area (m2 g−1) 42.0
Na2O 0.07 Maximum dry density (mg m−3) 1.31
K2O 0.11 Optimum moisture content (%) 34.0
P2O5 16.71 Unconfined compressive strength (kPa) 270.0
SO3 3.98 - -
CO2 3.65 - -

2. Materials and Methods

2.1. Materials

Iron-rich laterites were obtained from the Homagama area of Sri Lanka. Sodium hydroxide
(NaOH) pellets (98% (w/w) purity) and hydrochloric acid (HCl, 36.5% (v/v) assay) were purchased from
Euclid suppliers, Cleveland, OH, USA. Sodium dodecyl sulfate (SDS, 85% (w/w) assay) was purchased
from Labachemia suppliers, Milano, Italy. Cadmium chloride (CdCl2) and nickel chloride (NiCl2) were
obtained from Hopkins & Williams Ltd., Manselton, UK; BDH laboratory reagents, Muscat, Oman.

2.2. Synthesis of Hematite Nanoparticles

The powdered and dried iron-rich laterites were acid digested at 109 ◦C with 12 M HCl until the
solution became yellow (laterite: acid ratio (w/v%) = 1:3). Then the solution was cooled and filtered.
The filtrate was stirred vigorously with 10 mL of SDS on a stirrer for 15 min. A 3.5 M NaOH (filtrate:
NaOH ratio (w/v%) = 1:4) solution was added dropwise into the above mixture with continuous stirring
until a reddish-brown precipitate was formed. The mixture was centrifuged at 4500 rpm and further
stirred for 1 h. The reddish-brown precipitate was collected and heated at 110 ◦C for 4 h. Finally,
the dark red solid product was calcined at 800 ◦C for 2 h. Note that the particle size of the hematite
nanoparticles is governed by the NaOH concentration. Hematite nanoparticles synthesized were used
for Ni2+ and Cd2+ adsorption studies.

2.3. Characterization

The particle size of prepared hematite nanomaterials was analyzed using a particle size analyzer
(ZEN3600). A Rigaku Ultima IV X-ray diffractometer (XRD) equipped with radiation source Cu Kα

and a single curved crystal graphite monochromator (λ = 1.54056 nm) was used in XRD analysis of the
synthesized nanoparticles. An Agilent 7900 inductively coupled plasma mass spectroscopy (ICP-MS)
was used for the elemental analysis of the adsorbent. Fourier Transform Infra-Red (FT-IR) spectra of
the nanoparticles were obtained using a Bruker Vertex 80 FT-IR spectrometer with Hyperion 1000 ATR
microscopy accessory. A Hitachi SU6600 scanning electron microscope (SEM) was used to observe the
morphology of the prepared hematite nanoparticles.

2.4. Nitrogen Adsorption Studies

Nitrogen adsorption isotherms of synthesized hematite nanoparticles were measured at −196 ◦C
on an ASAP 2010 volumetric analyzer (Micromeritics, Inc., Norcross, GA, USA). Prior to the adsorption
measurements, all samples were outgassed under vacuum at 110 ◦C for 2 h.

2.5. Calculations of Surface Properties

The single-point pore volume (Vsp) was estimated from the amount adsorbed at a relative pressure
(p/p◦) of ~ 0.98. The pore size distributions (PSD) were calculated using adsorption branches of nitrogen
adsorption-desorption isotherms by the improved KJS method calibrated for cylindrical pores [40].
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The pore width (Wmax) was obtained at the maximum of the PSD curve. The Brunauer-Emmett-Teller
specific surface areas (SBET) were calculated from the N2 adsorption isotherms in the relative pressure
range of 0.05–0.20 using a cross-sectional area of 0.162 nm2 per nitrogen molecule.

2.6. Adsorption Studies

2.6.1. Preparation of Stock Metal Ion Solutions

1000 ppm nickel (Ni2+) and cadmium (Cd2+) stock solutions were prepared, respectively,
by dissolving the analytical grade nickel chloride (NiCl2) and cadmium chloride (CdCl2) in
deionized water.

2.6.2. pH Optimization

100 ppm Ni2+ and Cd2+ solutions were prepared from their respective stock solutions. Solutions of
different pH values (3–10) were prepared either by adding a 3.5 M NaOH or a 5 M HCl solution.
For each solution, 0.300 g of prepared hematite nanoparticles was added and stirred for 120 min.
These treated solutions were centrifuged at 4000 rpm and the supernatant was filtered off. Filtrates were
diluted and used to measure the equilibrium concentrations.

2.6.3. Mass Optimization

A series of 100 mL of 100 ppm Ni2+ and Cd2+ solutions were prepared from their respective stock
solutions with pH adjusted to pH 6 for Cd2+ and pH 6.5 for Ni2+ by adding appropriate amounts
of 3.5 M NaOH and 5 M HCl solutions. These solutions were stirred with 0.10, 0.20, 0.26, 0.28, 0.30,
0.32, 0.34, 0.36, and 0.40 g of prepared hematite nanoparticles for 120 min on a stirrer. These treated
solutions were centrifuged at 4000 rpm and supernatants were filtered off. The filtrates were diluted
and used to measure the equilibrium concentrations.

2.6.4. Kinetic Study

A series of 100 mL of 100 ppm Ni2+ (pH 6.5) and Cd2+ (pH 6) solutions were prepared from
their respective stock solutions by adding appropriate amounts of 3.5 M NaOH or 5 M HCl solution.
Prepared Cd2+ and Ni2+ solutions were stirred with 0.32 and 0.30 g of prepared hematite nanoparticles,
respectively, on a stirrer for 240 min. 0.5 mL of each solution was pipetted out from the stirring
solution at time intervals of 0, 30, 60, 90, 120, 150, 180, 210, and 240 min. These treated solutions were
centrifuged at 4000 rpm and supernatants were filtered. Finally, the filtered solutions were diluted and
used to determine the equilibrium concentrations.

2.6.5. Equilibrium Studies

A solution series (100 ppm, 200 ppm, 300 ppm, 400 ppm) of Ni2+ and Cd2+ solutions were prepared
from their respective stock solutions. The Cd2+ solutions were adjusted to pH 6 and Ni2+ solutions were
adjusted to pH 6.5. Prepared Cd2+ solutions and Ni2+ solutions were stirred with 0.32 and 0.30 g of
hematite nanoparticles, respectively, on a stirrer for 120 min. These treated solutions were centrifuged
at 4000 rpm and supernatants were filtered. The filtered solutions were diluted and measured for
equilibrium concentrations using an Agilent 7900 Inductively Coupled Plasma Mass Spectroscopy
(ICP-MS). All experiments were carried out at room temperature and atmospheric pressure (1 atm).
The results were evaluated using the Langmuir and Freundlich adsorption isotherm models.

2.6.6. Adsorption Isotherms

RE% =

(
C0 −Ce

C0

)
× 100% (1)
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The equilibrium concentration of each solution represents the average of three independent
measurements. Removal efficiencies (RE %) were calculated using Equation (1), where C0 (mg L−1) is
the initial adsorbate concentration, and Ce (mg L−1) is the equilibrium adsorbate concentration [41].

qe =
(C0 −Ce)V

m
(2)

The adsorption capacities (qe) of Ni2+ and Cd2+ adsorbed onto hematite nanoparticles were
calculated using Equation (2), where C0 (mg L−1) is the initial adsorbate concentration, Ce (mg L−1)
is the equilibrium adsorbate concentration, V(L) is the volume of solution, and m is the mass (g) of
adsorbent [41]. (

Ce

qe

)
=

(
1

qm

)
×Ce +

(
1

qmKL

)
(3)

Adsorption isotherms were plotted using the calculated adsorption capacities and equilibrium
concentrations. Equation (3) shows the linearized form of the Langmuir monolayer adsorption
Isotherm, where Ce is the equilibrium concentration of adsorbate in solution (mg L−1), qe is the
equilibrium adsorption capacity of adsorbent (mg g−1), qm is the highest adsorption capacity of
adsorbent (mg g−1), and KL is the Langmuir constant [41].

ln qe =
( 1

n

)
ln Ce + ln KF (4)

Similarly, Freundlich Isotherm which describes the multi-layer adsorption can be linearized as
shown in Equation (4), where Ce is the equilibrium concentration of adsorbate (mg L−1), qe is the
equilibrium adsorption capacity of adsorbent (mg g−1), and KF and n are the Freundlich constants [41].

ln
(
qe − qt

)
= ln

(
qe

)
− k1t (5)

Adsorption kinetics can be used to optimize the time consumption of an adsorption process.
The pseudo-first-order kinetic model suggests that the kinetics of the adsorption process depends
on the adsorbate concentration rather than the adsorbent concentration. Equation (5) shows the
pseudo-first-order kinetic model, where qe is the equilibrium adsorption capacity of adsorbent
(mg g−1), qt is the adsorption capacity of adsorbent at time t (mg g−1), t is the time elapsed (min),
and k1 is the rate constant (g mg−1 min−1) [45,46].

t
qt

=

(
1

k2q2
e

)
+

t
qe

(6)

Equation (6) shows the Pseudo-second order kinetic model, where qe is the equilibrium adsorption
capacity of adsorbent (mg g−1), qt is the adsorption capacity of adsorbent at time t (mg g−1), t is the time
elapsed (min), and k2 is the rate constant (g mg−1 min−1). This model suggests that the kinetics of the
adsorption process depends on the adsorbent concentration rather than the adsorbate concentration.
Generally, it considers the adsorption site concentration [45,46]. All adsorption measurements were
conducted in triplicates. Equilibrium concentrations (Ce) and adsorption capacities (qe) used in the two
kinetic models are the average values of at least three independent measurements at each concentration.
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3. Results

3.1. Synthesis of Hematite Nanoparticles

In the synthesis process, acid digestion of laterite involves the digestion of the major constituents;
Al2O3 and Fe2O3, into their chloride forms. Equations (7) and (8) show the reactions involved in the
acid digestion of laterites:

Fe2O3(s) + 6HCl(aq) → 2FeCl3(aq) + 3H2O(l) (7)

Al2O3(s) + 6HCl(aq) → 2AlCl3(aq) + 3H2O(l) (8)

After acid digestion, the solution is filtered off to remove acid-insoluble constituents such as
SiO2. The resulting solution was mixed with SDS and stirred continuously with the dropwise addition
of NaOH. Here the SDS acts as a stabilizer to prevent the highly active nanoparticle agglomeration,
responsible for particle size adjustments and works as a template. The excess NaOH in the solution
precipitates as Fe(OH)3 and AlCl3 reacts with NaOH to form NaAlO2 as shown in Equations (9)–(11):

FeCl3(aq) + 3NaOH(aq) → Fe(OH)3(s) + 3NaCl(aq) (9)

AlCl3(aq) + 3NaOH(aq) → Al(OH)3(s) + 3NaCl(aq) (10)

Al(OH)3(s) + NaOH(aq) → NaAlO2(aq) + 2H2O(l) (11)

SDS is partially and NaAlO2 is fully removed during the washing and centrifugation steps of
Fe(OH)3. However, calcination at 800 ◦C ensures the complete removal of SDS. Note that the optimal
concentration of 3.5 M NaOH was added to acid digested mixture to completely convert Al(OH)3 to
NaAlO2. Therefore, no residual Al(OH)3 was present in the final mixture.

3.2. Characterization of Synthesized Hematite Nanoparticles

Results obtained from the particle size analyzer (PSA) confirmed that the average particle size of
hematite particles is 37.5 nm. Figure 1a shows the PSA profile of the monodispersed hematite sample
with an average diameter of 37.5 nm. Note that the average particle size of the hematite nanoparticles
is governed by the concentration of NaOH added to the acid digested laterite solution.

Figure 1b shows the XRD diffractogram of the hematite nanoparticles. The XRD peaks, which
attribute to (012), (104), (110), (113), (024), (116), (122) and (018) crystalline planes, are in agreement
with the literature values reported for pure α-Fe2O3 hematite nanoparticles (See Figure 1b) [47,48].
ICP-MS (Table 2) and XRD (Figure 1c) data further confirm the formation of hematite nanoparticles
(α-Fe2O3) with a mass percentage of 97.17%. The absence of XRD peaks for NaAlO2 or Al(OH)3

confirm the complete removal of NaAlO2 during the filtration and washing steps [47,48].

Table 2. ICP-MS analysis of hematite nanoparticles.

Element Composition/%

(1) Fe 97.17
(2) Al 0.32
(3) Na 0.05
(4) V 0.02

FTIR spectrum of hematite nanoparticle is shown in Figure 1c. The vibration band observed at
588.54 cm−1 is attributed to the stretching vibrations of Fe-O bonds of hematite (Fe2O3). The bands
at 464.23 cm−1 and 419.68 cm−1 correspond to the formation of α-Fe2O3. Lack of the vibration band
at 708 cm−1 confirms the absence of hydrated iron (Fe-OH). This further indicates the conversion of
ferric hydroxide (Fe(OH)3) to hematite (Fe2O3). No vibration peaks were observed for SDS confirming
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the complete removal of SDS during the calcination. The absence of vibration peaks for NaAlO2 or
Al(OH)3 further confirms their complete removal during filtration and washing steps. Other major
peaks at 3506.58, 3380.61, 3048.04, 1652.26 cm−1 are assigned to physically adsorbed moisture (H2O
vapor) and the vibration band at 1487.34 cm−1 represents carbon dioxide adsorbed onto the highly
reactive surface of the nanomaterials [49,50].J. Compos. Sci. 2020, 4, x FOR PEER REVIEW 7 of 18 
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Figure 3. SEM images of hematite nanoparticles powder at (a) 4 µm, (b) 1 µm, (c) 300 nm, and (d) 200 nm
magnifications, respectively.

3.3. Nitrogen Adsorption Studies

Nitrogen adsorption isotherms were measured at −196 ◦C on an ASAP 2010 volumetric analyzer
for hematite nanoparticles with an average diameter of 37.5 nm. Figure 4 displays the nitrogen
adsorption-desorption isotherms measured at −196 ◦C for synthesized hematite nanoparticles.
Structural parameters calculated based on the nitrogen sorption data are shown in Table 3. Nitrogen
adsorption isotherm of hematite nanoparticles shows a type IV isotherm with a H1 type hysteresis loop
characteristic for mesoporous materials. The sample exhibits a capillary condensation-evaporation
step in the relative pressure range of ~0.80–0.98. This type of isotherms with the H1 hysteresis loop
represents characteristic cylindrical pores.

Table 3. Adsorption parameters for the Hematite nanoparticle (Hematite NP) samples studied.

Content Particle Diameter (nm) MLC
(cc STP/g)

Vsp
(cc/g)

Vmi
(cc/g)

SBET
(m2/g)

Wmax
nm

Vt
(cc/g)

Hematite
NP 37.5 2.53 0.02 <0.01 11.03 2.5/20.2 0.04

The total pore volume and specific surface area recorded for nanoparticles are ~0.04 cm3/g and
11.03 m2/g, respectively. However, the calculated micropore volume for the hematite nanoparticles is
less than 0.01 cm3/g. PSD curve for the nanoparticles is shown in Figure 4, right panel. The nanoparticles
showed Wmax at 20.2 nm and 2.5 nm.

Particle Diameter was obtained from particle size analyzer, MLC-Monolayer capacity,
Vsp-single-point pore volume calculated at the relative pressure of 0.98; Vmi—the cumulative pore
volume of micropores, (pores below 2 nm) was calculated on the basis of the KJS method; SBET—specific
surface area calculated from adsorption data in relative pressure range 0.05–0.20; Wmax—pore width
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calculated at the maximum of PSD, using improved KJS method; Vt—total pore volume calculated by
integration of the PSD curve [54,55].
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3.4. Heavy Metal Sorption

The removal efficiency of Ni2+ and Cd2+ by hematite nanoparticles from aqueous solution
was calculated using Equation (1). The removal efficiencies (RE%) of Ni2+ and Cd2+ by hematite
nanoparticles at four different adsorbate concentrations are tabulated in Table 4. As can be seen from
Table 4, the highest RE% value of 80.50% and 95.95% was observed at 100 ppm initial concentration for
Ni2+and Cd2+, respectively. The RE% decreases as the concentration of initial Ni2+and Cd2+ increases
due to the saturation of adsorbent sites available on the adsorbent. Interestingly, Ni2+ showed a slightly
higher decrement of RE% as compared to Cd2+ with increasing concentration.

Table 4. Removal efficiencies (RE %) of hematite nanoparticles at different concentrations of Ni2+and
Cd2+ ions.

Initial Concentration/ppm RE% of Ni2+ RE% of Cd2+

100 80.50 ± 0.04 95.95 ± 0.08
200 72.41 ± 0.07 94.29 ± 0.08
300 50.58 ± 0.02 92.89 ± 0.05
400 43.93 ± 0.07 91.21 ± 0.02

3.5. Langmuir Adsorption Isotherm Studies

Langmuir constants and maximum adsorption capacities of each ion calculated using the linearized
Langmuir adsorption isotherm (see Figure 5) are tabulated in Table 5.

RL =
1

(1 + (KLC0))
(12)
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Table 5. Langmuir adsorption isotherm constants of Ni2+ and Cd2+ ions adsorbed onto
hematite nanoparticle.

Ion Qm/mg g−1 KL/L mg−1 Regression (R2)

Ni2+ 62.50 ± 0.05 (4.07 × 10−2) ± 0.07 0.98
Cd2+ 200.00 ± 0.08 (4.10 × 10−2) ± 0.05 0.97

The separation factor or equilibrium parameter denoted as RL of both ions is calculated using
Equation (12) and tabulated in Table 6, where KL is the Langmuir constant (L/mg), and C0 is the
initial concentration of adsorbate (mg/L). The separation factor of both Ni2+ and Cd2+ lies in the range
of 0.058 to 0.197. Since the RL value of both ions is between 0 and 1, the data follow a monolayer
adsorption mechanism [56,57]. Typically, the monolayer adsorption mechanism is a clear indication of
the chemisorption of absorbate onto the adsorbent.

Table 6. Separation factors (RL) at each adsorbate concentration.

C0 (Ppm) RL for Ni2+ RL for Cd2+

100 0.197 0.196
200 0.109 0.109
300 0.076 0.075
400 0.058 0.058

3.6. Freundlich Adsorption Isotherm

Figure 6 shows the Freundlich isotherms of Cd2+ and Ni2+ ions adsorbed onto hematite
nanoparticles. The Freundlich isotherms were constructed using Equation (4) and the Freundlich
constants calculated are tabulated in Table 7.

Table 7. Freundlich adsorption isotherm constants for Ni2+ and Cd2+ ions adsorbed onto
hematite nanoparticles.

Ion 1/n KF Regression (R2)

Ni2+ 0.29 ± 0.04 12.30 ± 0.15 0.80
Cd2+ 0.62 ± 0.03 12.93 ± 0.48 0.99

As can be seen from R2 values in Table 7, the adsorption of Cd2+ by hematite nanoparticles fitted
comparatively well to the Freundlich model as compared to Ni2+. Moreover, the Freundlich plots show
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positive values for Freundlich constants and positive gradients for both Cd2+ and Ni2+ ions. Therefore,
Freundlich isotherms suggest multilayer adsorption of Cd2+ and Ni2+ ions onto hematite nanoparticles.
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Cd2+ and Ni2+ ions show a combination of the monolayer (chemisorption) and partial multilayer
adsorption (physisorption). The value of

(
1
n

)
is < 1, which indicates a typical adsorption process

where adsorbates show reversible interactions with the adsorbent showing a multilayer adsorption
mechanism. This also suggests the possibility of reusing the adsorbent [56,57]. The isotherms in
Figures 5 and 6 are plotted from the data collected from batch experiments conducted in a selected
range of concentrations of heavy metal ions from 100 to 400 ppm.

Based on the two models applied, the adsorption data of Ni2+ ions fitted well to the Langmuir
model, whereas the adsorption data of Cd2+ followed the Freundlich model. These results reveal that
the adsorption of Ni2+ by hematite nanoparticles is predominantly via the chemisorption process.
This is further proven by the RE% data of Ni2+. The RE% (removal efficiencies) values of Ni2+ decrease
significantly as the Ni2+ concentration increases indicating the complete saturation of the active sites
on the adsorbent and hence no further adsorption occurs. On the contrary, the RE% values of Cd2+

did not show a significant decrease and remained around 90% as the concentration of Cd2+ increases,
suggesting the adsorption is via both chemisorption and physisorption processes. Here the adsorption
process further continues via physisorption even after the saturation of active sites on the adsorbent
is reached.

3.7. pH Optimization

Figures 7 and 8 show the plots of the adsorption capacity and the removal efficiency of the samples
at different pH values. The pH values at which the adsorption capacity and removal efficiency reach the
highest are selected as the optimum pH value for the adsorption of two ions onto hematite nanoparticles.
The optimum pH obtained for Ni2+ and Cd2+ is pH 6.5 and 6.0, respectively. Data collected at optimum
pH values were used in kinetic models.
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3.8. Mass Optimization

The amount of adsorbate adsorbed is directly proportional to the adsorption capacity of the
nanomaterial. Therefore, the adsorbate removal quantity [initial concentration (C0)—equilibrium
concentration (Ce)] is plotted against a gradient of the adsorbent amount. The optimized amount
of adsorbent needed for maximum removal efficiency is obtained from the non-linear regression of
the following plots in Figure 9. The optimum amount of adsorbent for Ni2+ and Cd2+ is 0.30 g and
0.32 g, respectively.
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3.9. Kinetics Studies

Kinetic studies provide valuable information about the rate of Ni2+ and Cd2+ uptake by hematite
nanomaterials, their reaction pathways, and possible binding mechanisms. The variation of adsorption
capacity over time and pseudo-second-order kinetics are plotted in Figures 10 and 11, respectively.
Regression data (R2) of both kinetic models suggest that the data fitted well to the second-order model
as compared to the first-order model (data not provided).J. Compos. Sci. 2020, 4, x FOR PEER REVIEW 13 of 18 
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3.10. Adsorption Mechanisms

The study of two adsorption isotherms of Ni2+ and Cd2+ showed a similar adsorption
mechanism [58,59]. As revealed by previous studies, monolayer coverage is explained by the
Langmuir isotherm, which describes the chemisorption. During this process, metal ions bind to the
specific sites of the absorbent with much stronger interactions, however, the reversible desorption
process occurs only under specific conditions such as pH and temperature. The multilayer coverage
is explained by the Freundlich model indicating the physisorption where the metal ions bind to the
adsorbent with much weaker interactions via Van der Waals forces, hence the reversible desorption
process could occur under normal conditions.

The Fe-O functional groups of hematite are responsible for the chemisorption of metal ions.
The hematite is made up of two ferric (III) ions in octahedral coordination with three oxide ions in
hexagonal close-packing. Each ferric ion and oxide ion in hematite molecule possesses a positive
charge of +3 and a negative charge of −2, respectively. Hence, the overall charge of the hematite
molecule is zero. The electron density distribution of the molecule suggests that the overall charge
of the molecule is not neutral at all the time due to the uneven distribution of electrons in its atomic
orbitals. This principle is called the electron density distribution heterogeneity, which explains the
physisorption via weak Van der Walls interactions between metal ions and hematite nanoparticles.

In addition, it is reasonable to assume that the chemisorption is through the coordination between
O− or OH− groups available on hematite nanomaterials with Ni2+ and Cd2+. The chemisorption
process can be well explained using the Pearson HSAB (hard-soft acid-base) theory. Based on the
HSAB concept, hard acids like binding to the hard bases, resulting in strong ionic complexes. Both Ni2+

and Cd2+ are hard acids, and hence form strong ionic interactions with hard bases such as O− or OH−.
The hematite nanoparticles showed monolayer adsorption capacities of 62.5 for Ni2+ and

200.00 mg g−1 for Cd2+, and multilayer adsorption capacities of 12.30 mg g−1 for Ni2+and 12.93 mg g−1

for Cd2+, respectively, (See Tables 5 and 7). The hematite nanoparticles exhibited strong monolayer
chemisorption weak reversible multilayer physisorption with both metal ions. However, data for Cd2+

fitted well to both kinetic models with a regression value above 97%. Data for Ni2+ did not fit well to
the Freundlich model giving a regression value of 80%. This suggests that the physisorption process of
Ni2+ ions by hematite nanoparticles is less favourable.

3.11. Possible Applications of This Adsorption Process

Thus far, different types of adsorbents have been used for heavy metal removal. However, many of
them inherit certain drawbacks such as energy extensive nature, high cost of processing, low efficiencies,
and lower adsorption capacities [50]. Nevertheless, the hematite nanomaterials reported in the present
study have many promising properties as compared to other adsorbents; they include relatively
easy synthesis route, low cost, and less energy requirement. Interestingly, our material also shows
higher removal efficiencies and high adsorption capacities of Ni2+ and Cd2+ comparable to the other
adsorbents reported in the literature (see Table 8).

The ability of the prepared hematite nanomaterial to adsorb Ni2+ and Cd2+ can be mainly used
in the remediation process of industrial effluents contaminated with heavy metals. Due to relatively
higher adsorption towards heavy metals, this material can also be used in water purification filters.

The ability of the prepared hematite nanomaterial to adsorb Ni2+ and Cd2+ can be mainly used
in the remediation process of industrial effluents contaminated with heavy metals. Due to relatively
higher adsorption towards heavy metals, this material can also be used in water purification filters.

Note that it is reasonable to assume the possibility of releasing a negligible amount of hematite
nanomaterials to the aqueous solution during the centrifugation and filtration steps of the synthesis.
However, the leached-out nanoparticles can be recycled and used for other applications [56,57,64].
Therefore, our synthesis route is environmentally friendly and a green approach. Most importantly,
our synthesis procedure is well suited for the preparation of large-scale filters that can be used for the
removal of industrial heavy metal waste effluents.
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Table 8. Comparison of Cd2+ and Ni2+ ions adsorbents and their maximum adsorption capacities [14,60–64].

Adsorbent Heavy Metal Ion Maximum Adsorption Capacity/mg g−1 References

Activated carbon
Ni(II) 400.0 [14,60–62]
Cd(II) 178.5

CNT * modified with hydroxyquinoline Ni(II) 4.2 [63]
CNT * Cd(II) 10.9 [64]

Laterite derived-hematite nanoparticles Ni(II) 62.5 Current study
Cd(II) 200.0 Current study

* CNT = Carbon Nanotubes.

4. Conclusions

A facile and low-cost method was successfully devised to synthesize hematite nanomaterials from
laterites. The sorption ability of hematite nanoparticles for the removal of Ni2+ and Cd2+ heavy metal
ions was also investigated. The highest adsorption capacities of 62.5 mg g−1 and 200.00 mg g−1 were
observed for Ni2+ and Cd2+, respectively. The hematite nanoparticles derived from laterites show the
potential to remove heavy metals from industrial effluents. Furthermore, this study also paves the way
for the preparation of value-added filter materials from naturally abundant iron-rich laterite ores.
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