Preparation and Characterization of an Electrospun PLA-Cyclodextrins Composite for Simultaneous High-Efficiency PM and VOC Removal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Characterization
2.3. PM Generation and Efficiency Tests
3. Results
3.1. Electrospun Nanofiber Morphology
3.2. FTIR Spectroscopy
3.3. PM and VOC Removal Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Reneker, D.H.; Yarin, A.L.; Zussman, E.; Xu, H. Electrospinning of nanofibers from polymer solutions. Polym. (Guildf). 2007. [Google Scholar] [CrossRef]
- Krishnan, R.; Sundarrajan, S.; Ramakrishna, S. Green processing of nanofibers for regenerative medicine. Macromol. Mater. Eng. 2012, 298. [Google Scholar] [CrossRef]
- Pierpaoli, M.; Ruello, M.L. IAQ: A bibliometric study. Sustainability 2018, 10, 3830. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Murugan, R.; Wang, S.; Ramakrishna, S. Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 2005, 26, 2603–2610. [Google Scholar] [CrossRef] [PubMed]
- Mohammadian, M.; Haghi, A.K. Systematic parameter study for nano-fiber fabrication via electrospinning process. Bulg. Chem. Commun. 2014, 46, 545–555. [Google Scholar] [CrossRef]
- Chakraborty, S.; Liao, I.C.; Adler, A.; Leong, K.W. Electrohydrodynamics: A facile technique to fabricate drug delivery systems. Adv. Drug Deliv. Rev. 2009, 61, 1043–1054. [Google Scholar] [CrossRef] [Green Version]
- You, Y.; Won, S.; Jin, S.; Ho, W. Thermal interfiber bonding of electrospun poly ( L -lactic acid ) nanofibers. Mater. Lett. 2006, 60, 1331–1333. [Google Scholar] [CrossRef]
- Park, J.; Lee, I. Controlled release of ketoprofen from electrospun porous polylactic acid ( PLA ) nanofibers. J. Polym. Res. 2011, 1287–1291. [Google Scholar] [CrossRef]
- Li, Y.; Lim, C.T.; Kotaki, M. Study on structural and mechanical properties of porous PLA nanofibers electrospun by channel-based electrospinning system. Polym. (UK) 2015, 56, 572–580. [Google Scholar] [CrossRef]
- Casasola, R.; Thomas, N.L.; Trybala, A.; Georgiadou, S. Electrospun poly lactic acid (PLA) fibres: Effect of different solvent systems on fibre morphology and diameter. Polym. (UK) 2014, 55, 4728–4737. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Zhao, C.; Pan, Z. Porous bead-on-string poly(lactic acid) fibrous membranes for air filtration. J. Colloid Interface Sci. 2015, 441, 121–129. [Google Scholar] [CrossRef]
- Aulton, M.E.; Taylor, K.M.G. Tecnologie Farmaceutiche-Progettazione e Allestimento dei Medicinali; Edra: London, UK, 2015. [Google Scholar]
- Sliwa, W.; Girek, T. Cyclodextrins. Properties and Application; Wiley-VCH: Hoboken, NJ, USA, 2017. [Google Scholar]
- Kayaci, F.; Umu, O.C.O.; Tekinay, T.; Uyar, T. Antibacterial electrospun poly(lactic acid) (pla) nanofibrous webs incorporating Triclosan/Cyclodextrin inclusion complexes. J. Agric. Food Chem. 2013. [Google Scholar] [CrossRef]
- Arkas, M.; Allabashi, R.; Tsiourvas, D.; Mattausch, E.M.; Perfler, R. Organic/inorganic hybrid filters based on dendritic and cyclodextrin “nanosponges” for the removal of organic pollutants from water. Env. Sci. Technol. 2006, 40, 2771–2777. [Google Scholar] [CrossRef] [PubMed]
- Favier, I.M.; Baudelet, D.; Fourmentin, S. VOC Trapping by New Crosslinked Cyclodextrin Polymers. In Proceedings of the Journal of Inclusion Phenomena and Macrocyclic Chemistry; Springer: New York, NY, USA, 2011; Volume 69, pp. 433–437. [Google Scholar]
- Wen, P.; Zhu, D.H.; Feng, K.; Liu, F.J.; Lou, W.Y.; Li, N.; Zong, M.H.; Wu, H. Fabrication of electrospun polylactic acid nanofilm incorporating cinnamon essential oil/β-cyclodextrin inclusion complex for antimicrobial packaging. Food Chem. 2016, 196, 996–1004. [Google Scholar] [CrossRef] [PubMed]
- Aytac, Z.; Kusku, S.I.; Durgun, E.; Uyar, T. Encapsulation of gallic acid/cyclodextrin inclusion complex in electrospun polylactic acid nanofibers: Release behavior and antioxidant activity of gallic acid. Mater. Sci. Eng. C 2016, 63, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Loftsson, T.; Duchêne, D. Cyclodextrins and their pharmaceutical applications. Int. J. Pharm. 2007, 329, 1–11. [Google Scholar] [CrossRef]
- Butterfield, M.T.; Agbaria, R.A.; Warner, I.M. Extraction of volatile PAHs from air by use of solid cyclodextrin. Anal. Chem. 1996, 68, 1187–1190. [Google Scholar] [CrossRef]
- Crini, G.; Peindy, H.N.; Gimbert, F.; Robert, C. Removal of C.I. Basic Green 4 (Malachite Green) from aqueous solutions by adsorption using cyclodextrin-based adsorbent: Kinetic and equilibrium studies. Sep. Purif. Technol. 2007, 53, 97–110. [Google Scholar] [CrossRef]
- Alsbaiee, A.; Smith, B.J.; Xiao, L.; Ling, Y.; Helbling, D.E.; Dichtel, W.R. Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer. Nature 2016, 529, 190–194. [Google Scholar] [CrossRef]
- Pierpaoli, M.; Riderelli, L.; Palmieri, S.; Fava, G.; Ruello, M.L. Transparent Electrospun PLA-nanofibers on 3D-printed Honeycomb for a High-efficient Air Filtration. In Proceedings of the Indoor Air 2018, Philadelphia, PA, USA, 22–27 July 2018. [Google Scholar]
- Medhurst, L.J. FTIR determination of pollutants in automobile exhaust: An environmental chemistry experiment comparing cold-start and warm-engine conditions. J. Chem. Educ. 2005, 82, 278. [Google Scholar] [CrossRef]
- Qin, X.; Wang, S. Filtration properties of electrospinning nanofibers. Mater. Sci. 2006, 102, 1285–1290. [Google Scholar] [CrossRef]
- Uyar, T.; Havelund, R.; Hacaloglu, J.; Besenbacher, Ќ.F.; Kingshott, P. Cyclodextrins: Comparison of molecular filter performance. Acs Nano 2010, 4, 5121–5130. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Pan, Z.; Wang, J.; Zhao, R. A Novel Hierarchical Structured Poly(lactic acid)/Titania Fibrous Membrane with Excellent Antibacterial Activity and Air Filtration Performance. J. Nanomater. 2016, 2016, 17. [Google Scholar] [CrossRef]
- Li, H.; Wang, Z.; Zhang, H.; Pan, Z. Nanoporous PLA/(Chitosan Nanoparticle) composite fibrous membranes with excellent air filtration and antibacterial performance. Polym. (Basel) 2018, 10, 1085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Li, Q.; Young, T.M.; Harper, D.P.; Wang, S. A novel method for fabricating an electrospun poly(vinyl alcohol)/cellulose nanocrystals composite nanofibrous filter with low air resistance for high-efficiency filtration of particulate matter. Acs Sustain. Chem. Eng. 2019, 7, 8706–8714. [Google Scholar] [CrossRef]
- Wang, Z.; Pan, Z. Preparation of hierarchical structured nano-sized/porous poly(lactic acid) composite fibrous membranes for air filtration. Appl. Surf. Sci. 2015. [Google Scholar] [CrossRef]
- Huang, J.J.; Tian, Y.; Wang, R.; Tian, M.; Liao, Y. Fabrication of bead-on-string polyacrylonitrile nanofibrous air filters with superior filtration efficiency and ultralow pressure drop. Sep. Purif. Technol. 2020, 237, 116377. [Google Scholar] [CrossRef]
Filter | Solution | CyD | voutlet (m/s) | ΔP (Pa) | Filter Loading (mg/cm2) | |
---|---|---|---|---|---|---|
PLA | CyD | |||||
PLA | 100% | 0 | - | 0.25 | 24.4 | 1.43 |
PLA/CyD | 98.5% | 1.5% | - | 0.41 | 33.9 | 2.47 |
PLA + CyD | 100% | - | 1.5% | 0.24 | 29.9 | 4.05 |
Electrospun Polymer | Efficiency | Comments | Ref |
---|---|---|---|
PLA | 99.997% (165.3 Pa) | Small fiber diameter and the presence of additional mesopores on the beads were conducive to the capture and adsorption of particulates. | [11] |
PLA/TiO2 | 99.996% (128.7 Pa) | Relative humidity of 45% and face velocity of 5.3 cm/s and a high antibacterial activity of 99.5% | [27] |
PLA/CNPs | 98.99% (147.60 Pa) | Air flow rate of 14 cm/s. PLA/chitosan fibers show a highly porous structure | [28] |
PVA/CNCs | 99.1% (91 Pa) | Tests with PM2.5 and airflow velocity of 0.2 m/s | [29] |
Hierarchical structured nano-sized/porous PLA | 99.999% (93.3 Pa) | PLA-N/PLA-P double-layer structured membrane with a mass ratio of 1/5. Face velocity of 5.3 cm/s | [30] |
PAN | > 99% (27 Pa) | Nanobeads are useful for reducing the packing density and the pressure drop through the filter. Ultrafine nanofibers guarantee the PM removal efficiency. Airflow rate of 4.2 cm/s | [31] |
PLA/CyD | > 98% (30Pa) | This study |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palmieri, S.; Pierpaoli, M.; Riderelli, L.; Qi, S.; Ruello, M.L. Preparation and Characterization of an Electrospun PLA-Cyclodextrins Composite for Simultaneous High-Efficiency PM and VOC Removal. J. Compos. Sci. 2020, 4, 79. https://doi.org/10.3390/jcs4020079
Palmieri S, Pierpaoli M, Riderelli L, Qi S, Ruello ML. Preparation and Characterization of an Electrospun PLA-Cyclodextrins Composite for Simultaneous High-Efficiency PM and VOC Removal. Journal of Composites Science. 2020; 4(2):79. https://doi.org/10.3390/jcs4020079
Chicago/Turabian StylePalmieri, Silvia, Mattia Pierpaoli, Luca Riderelli, Sheng Qi, and Maria Letizia Ruello. 2020. "Preparation and Characterization of an Electrospun PLA-Cyclodextrins Composite for Simultaneous High-Efficiency PM and VOC Removal" Journal of Composites Science 4, no. 2: 79. https://doi.org/10.3390/jcs4020079
APA StylePalmieri, S., Pierpaoli, M., Riderelli, L., Qi, S., & Ruello, M. L. (2020). Preparation and Characterization of an Electrospun PLA-Cyclodextrins Composite for Simultaneous High-Efficiency PM and VOC Removal. Journal of Composites Science, 4(2), 79. https://doi.org/10.3390/jcs4020079