A Nonlinear Analysis Interpretation of Off-Axis Test Results in Metal Matrix Composites
Abstract
:1. Introduction
2. Approach
2.1. Determination of Internal State of Stress
2.2. Determination of Boundary Conditions
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chawla, N.; Chawla, K.K. Metal Matrix Composites, 2nd ed.Springer: New York, NY, USA, 2013. [Google Scholar]
- Hayat, M.D.; Singh, H.; He, Z.; Cao, P. Titanium metal matrix composites: An overview. Compos. Part A 2019, 121, 418–438. [Google Scholar] [CrossRef]
- Lee, J.; Elam, S. Development of Metal Matrix Composites for NASA’s Advanced Propulsion Systems, NASA/CP-2001-210427. In Proceedings of the 4th Conference on Aerospace Materials, Processes, and Environmental Technology, Huntsville, AL, USA, 18–20 September 2000. [Google Scholar]
- Toor, Z.S. Applications of Aluminum-Matrix Composites in Satellite: A Review. J. Sp. Technol. 2017, 7, 1–6. [Google Scholar]
- Prasad, S.V.; Asthana, R. Aluminum metal–matrix composites for automotive applications tribological considerations. Tribol. Lett. 2004, 17, 445–453. [Google Scholar] [CrossRef]
- Zweben, C. Advances in composite materials for thermal management in electronic packaging. JOM 1998, 50, 47–51. [Google Scholar] [CrossRef]
- Sun, C.T.; Chen, J.L.; Sha, G.T.; Koop, W.E. Mechanical characterization of SCS-6/Ti-6-4 metal matrix composite. J. Compos. Mater. 1990, 24, 1029–1059. [Google Scholar] [CrossRef]
- Majumdar, B.S.; Newaz, G.M. Inelastic deformation of metal matrix composite: Plasticity and damage mechanisms. Philos. Mag. A 1992, 66, 187–212. [Google Scholar] [CrossRef]
- Majumdar, B.S.; Newaz, G.M.; Ellis, J.R. Evaluation and damage in titanium-based fiber reinforced composites. Metall. Trans A. 1993, 24, 1597–1610. [Google Scholar] [CrossRef]
- Newaz, G.M.; Majumdar, B.S. Deformation and failure mechanism in metal matrix composites. In Proceedings of the Winter Annual Meeting of The America Society of Mechanical Engineers, Atlanta, GA, USA, 17–22 November 1991; pp. 1–6. [Google Scholar]
- Newaz, G.M.; Zhang, K. Inelastic response of off-axis MMC lamina. ASME J. Eng. Mat. Technol. 1998, 120, 163–169. [Google Scholar] [CrossRef]
- Nicholas, T.; Kroupa, J.L. Micromechanics analysis and life prediction of metal matrix composites. ASTM J. Compos. Technol. Res. 1998, 20, 79–88. [Google Scholar]
- Pindera, M.-J.; Bansal, Y. On the micromechanics-based simulation of metal matrix composite response. J. Eng. Mater. Technol. 2007, 129, 468–482. [Google Scholar] [CrossRef]
- Ahmad, J.; Nicholas, T. Modeling of inelastic metal matrix composite under multiaxial loading. In Proceedings of the ASME Symposium on Failure Mechanisms and Mechanism Based Modeling in High Temperature Composites, ASME Winter Annual Meeting, Atlanta, Georgia, 17–22 November 1996; AD-Volume 51/MD-Volume 73, pp. 311–323. [Google Scholar]
- Ahmad, J.; Newaz, G.M.; Nicholas, T. Prediction of metal matrix composite response to multiaxial stresses. Recent Advances in Mechanics of Aerospace Structures and Materials. In Proceedings of the 1998 ASME International Mechanical Engineering Congress and Exposition, Anaheim, CA, USA, 15–20 November 1998; AD-Volume 56. [Google Scholar]
- Santhosh, U.; Ahmad, J. metal matrix composite response under biaxial loading. Constitutive Behavior of High Temperature Composites. In Proceedings of the ASME Winter Annual Meeting, Materials Division, Anaheim, CA, USA, 8 November 1992; MD-Volume 40. [Google Scholar]
- Santhosh, U.; Ahmad, J.; Nagar, A. Non-linear micromechanics analysis prediction of the behavior of titanium-alloy matrix composites. Fracture and Damage. In Proceedings of the ASME Winter Annual Meeting, Aerospace Division, Anaheim, CA, USA, 8 November 1992; AD-Volume 27, pp. 65–76. [Google Scholar]
- Chun, H.-J.; Daniel, I.M. Behavior of a Unidirectional Metal-Matrix Composite Under Thermomechanical Loading. J. Eng. Mater. Technol. 1996, 118, 310–316. [Google Scholar] [CrossRef]
- Dong, M.; Schmauder, S. Modeling of metal matrix composites by a self-consistent embedded cell model. Acta Mater. 1996, 44, 2465–2478. [Google Scholar] [CrossRef]
- Aboudi, J.; Pindera, M.-J. Micromechanics of Metal Matrix Composites Using the Generalized Method of Cells Model: User’s Guide; NASA Contractor Report CR 190756; NASA-Lewis Research Center: Cleveland, OH, USA, 1992. [Google Scholar]
- Shoukry, S.N.; Prucz, J.C.; Shankaranarayana, P.G.; William, G.W. Microstructure Modeling of Particulate Reinforced Metal Matrix Composites. Mech. Adv. Mater. Struct. 2007, 14, 499–510. [Google Scholar] [CrossRef]
- Avila, A.F.; Krishina, T.K. Non-linear Analysis of Laminated Metal Matrix Composites by an Integrated Micro/Macro-Mechanical Model. J. Braz. Soc. Mech. Sci. 1999, 21, 622–640. [Google Scholar] [CrossRef]
- Bednarcyk, B.A.; Arnold, S.M. Micromechanics-based deformation and failure prediction for longitudinally reinforced titanium composites. Compos. Sci. Tech. 2001, 61, 705–729. [Google Scholar] [CrossRef]
- Santhosh, U.; Ahmad, J. An approach for nonlinear modeling of polymer matrix composites. J. Comp. Mater. 2014, 48, 1755–1765. [Google Scholar] [CrossRef]
- Pettermann, H.E.; Huber, C.O.; Luxner, M.H.; Nogales, S.; Böhm, H.J. An Incremental Mori-Tanaka Homogenization Scheme for Finite Strain Thermoelastoplasticity of MMCs. Materials 2010, 3, 434–451. [Google Scholar] [CrossRef]
- Chawla, N.; Chawla, K.K. Microstructure-based modeling of the deformation behavior of particle reinforced metal matrix composites. J. Mater. Sci. 2006, 41, 913–925. [Google Scholar] [CrossRef]
- Qing, H. 2D micromechanical analysis of SiC/Al metal matrix composites under tensile, shear and combined tensile/shear loads. Mater. Des. 2013, 51, 438–447. [Google Scholar] [CrossRef]
- Chandu, S.; Ahmad, J.; Newaz, G.M. Detailed interpretation of off-axis and iosipescu test data on metal matrix composites. J. Reinf. Plast. Comp. 1997, 16, 1156–1167. [Google Scholar] [CrossRef]
- Abaqus 6.11 Analysis User’s Manual: Volumes 1 to 5; Dessault Systems Simulia Corp.: Providence, RI, USA, 2011.
- Kroupa, J.L.; Bartsch, M. Influence of viscoplasticity on the residual stress and strength of a titanium matrix composite after thermomechanical fatigue. Compos. Part B-Eng. 1998, 29, 633–642. [Google Scholar] [CrossRef]
- ASTM D3379-75(1989)e1. Standard Test Method for Tensile Strength and Young’s Modulus for High-Modulus Single-Filament Materials; ASTM International: West Conshohocken, PA, USA, 1975; Available online: www.astm.org (accessed on 2 February 2016).
- Kirkpatrick, S.W. Damage and Failure Behavior of Metal Matrix Composites under Biaxial Loads. Ph.D. Thesis, Stanford University, Stanford, CA, USA, September 1998. [Google Scholar]
θ (°) | σ11 | σ22 | σ12 |
---|---|---|---|
0 | 1 | 0 | 0 |
15 | 0.933 | 0.067 | 0.25 |
22.5 | 0.854 | 0.146 | 0.354 |
30 | 0.75 | 0.25 | 0.433 |
45 | 0.5 | 0.5 | 0.5 |
60 | 0.25 | 0.75 | 0.433 |
90 | 0 | 1 | 0 |
Properties | SCS-6 [23] | Ti-6Al-4V | ||
---|---|---|---|---|
23 °C | 427 °C | 23 °C | 427 °C | |
Young’s Modulus (GPa) | 393 | 378 | 120 | 95 |
CTE (μm/m°C) | 3.2025 | 3.9197 | 8.78 | 10.71 |
Poisson’s Ratio | 0.25 | 0.25 | 0.31 | 0.31 |
Yield Strength (MPa) | - | - | 880 | 460 |
SCS-6/Ti-6Al-4V | 23 °C | 427 °C |
---|---|---|
E11 (GPa) | 194 | 171 |
E22 (GPa) | 162 | 134 |
E33 (GPa) | 162 | 134 |
v12 | 0.311 | 0.316 |
v13 | 0.292 | 0.291 |
v23 | 0.292 | 0.291 |
G12 (GPa) | 62 | 51 |
G13 (GPa) | 58 | 47 |
G23 (GPa) | 58 | 47 |
α1 (μm/m°C) | 5.81 | 6.75 |
α2 (μm/m°C) | 7.51 | 9.21 |
α3 (μm/m°C) | 7.51 | 9.21 |
θ (°) | σ11 | σ22 | σ12 | σ33 = σ23 = σ31 |
---|---|---|---|---|
15 | 0.933 | 0.067 | 0.25 | 0 |
30 | 0.75 | 0.25 | 0.433 | 0 |
45 | 0.5 | 0.5 | 0.5 | 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, J.; Santhosh, U.; Chandu, S. A Nonlinear Analysis Interpretation of Off-Axis Test Results in Metal Matrix Composites. J. Compos. Sci. 2020, 4, 127. https://doi.org/10.3390/jcs4030127
Ahmad J, Santhosh U, Chandu S. A Nonlinear Analysis Interpretation of Off-Axis Test Results in Metal Matrix Composites. Journal of Composites Science. 2020; 4(3):127. https://doi.org/10.3390/jcs4030127
Chicago/Turabian StyleAhmad, Jalees, Unni Santhosh, and Swamy Chandu. 2020. "A Nonlinear Analysis Interpretation of Off-Axis Test Results in Metal Matrix Composites" Journal of Composites Science 4, no. 3: 127. https://doi.org/10.3390/jcs4030127
APA StyleAhmad, J., Santhosh, U., & Chandu, S. (2020). A Nonlinear Analysis Interpretation of Off-Axis Test Results in Metal Matrix Composites. Journal of Composites Science, 4(3), 127. https://doi.org/10.3390/jcs4030127