Investigations on Physico-Mechanical and Spectral Studies of Zn2+ Doped P2O5-Based Bioglass System
Abstract
:1. Introduction:
2. Experimental Methods and Materials
2.1. Synthesis of Bioglass Samples
2.2. Physical Parameters and Microhardness
2.2.1. Physical Parameters
2.2.2. Microhardness and Fracture Toughness
2.3. Thermal Properties
2.4. Structural Description of Bioglasses
3. Results and Discussion
3.1. Physical Parameters of the Bioglasses
3.2. Thermo Gravimetric-Differential Thermal Analysis
3.3. Vickers Hardness and Fracture Toughness
3.4. XRD Analysis
3.5. SEM-EDS Micrographs Analysis
3.6. FTIR Spectroscopic Analysis
3.7. Raman Spectra
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hench, L.L.; Paschall, H.A. Direct chemical bond of bioactive glass-ceramic materials to bone and muscle. J. Biomed. Mater. Res. 1973, 7, 25–42. [Google Scholar] [CrossRef] [PubMed]
- Hench, L.L. Bioceramics: From Concept to Clinic. J. Am. Ceram. Soc. 1991, 74, 1487–1510. [Google Scholar] [CrossRef]
- Neel, E.A.A.; Knowles, J.C. Physical and biocompatibility studies of novel titanium dioxide doped phosphate-based glasses for bone tissue engineering applications. J. Mater. Sci. Mater. Electron. 2007, 19, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Skelton, K.; Glenn, J.; Clarke, S.A.; Georgiou, G.; Valappil, S.; Knowles, J.C.; Nazhat, S.; Jordan, G.R. Effect of ternary phosphate-based glass compositions on osteoblast and osteoblast-like proliferation, differentiation and death in vitro. Acta Biomater. 2007, 3, 563–572. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, I.; Lewis, M.; Olsen, I.; Knowles, J.C. Phosphate glasses for tissue engineering: Part 1. Processing and characterisation of a ternary-based P2O5-CaO-Na2O glass system. Biomaterials 2004, 25, 491–499. [Google Scholar] [CrossRef]
- Groh, D.; Döhler, F.; Brauer, D.S. Bioactive glasses with improved processing. Part 1. Thermal properties, ion release and apatite formation. Acta Biomater. 2014, 10, 4465–4473. [Google Scholar] [CrossRef]
- Neel, E.A.A.; Pickup, D.M.; Valappil, S.P.; Newport, R.; Knowles, J.C. Bioactive functional materials: A perspective on phosphate-based glasses. J. Mater. Chem. 2009, 19, 690–701. [Google Scholar] [CrossRef] [Green Version]
- Lu, M.; Wang, F.; Chen, K.; Dai, Y.; Liao, Q.; Zhu, H. The crystallization and structure features of barium-iron phosphate glasses. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 148, 1–6. [Google Scholar] [CrossRef]
- Hejda, P.; Holubová, J.; Černošek, Z.; Cernosková, E. The structure and properties of vanadium zinc phosphate glasses. J. Non-Cryst. Solids 2017, 462, 65–71. [Google Scholar] [CrossRef]
- Magdas, D.A.; Vedeanu, N.; Toloman, D. Study on the effect of vanadium oxide in calcium phosphate glasses by Raman, IR and UV–vis spectroscopy. J. Non-Cryst. Solids 2015, 428, 151–155. [Google Scholar] [CrossRef]
- Hoppe, U.; Walter, G.; Kranold, R.; Stachel, D. Structural specifics of phosphate glasses probed by diffraction methods: A review. J. Non-Cryst. Solids 2000, 263, 29–47. [Google Scholar] [CrossRef]
- Brow, R.K. Review: The structure of simple phosphate glasses. J. Non-Cryst. Solids 2000, 263, 1–28. [Google Scholar] [CrossRef]
- Lucacel, R.C.; Maier, M.; Simon, V. Structural and in vitro characterization of TiO2-CaO-P2O5 bioglasses. J. Non-Cryst. Solids 2010, 356, 2869–2874. [Google Scholar] [CrossRef]
- Othman, H.A.; Arzumanyan, G.; Möncke, D. The influence of different alkaline earth oxides on the structural and optical properties of undoped, Ce-doped, Sm-doped, and Sm/Ce co-doped lithium alumino-phosphate glasses. Opt. Mater. 2016, 62, 689–696. [Google Scholar] [CrossRef]
- Knowles, J.C. Phosphate based glasses for biomedical applications. J. Mater. Chem. 2003, 13, 2395. [Google Scholar] [CrossRef]
- Wu, C.; Chang, J.; Zhai, W. A novel hardystonite bioceramic: Preparation and characteristics. Ceram. Int. 2005, 31, 27–31. [Google Scholar] [CrossRef]
- Chajri, S.; Bouhazma, S.; Herradi, S.; Barkai, H.; Elabed, S.; Koraichi, S.I.; el Bali, B.; Lachkar, M. Studies on preparation and characterization of SiO2–CaO–P2O5 and SiO2–CaO–P2O5–Na2O bioglasses subtituted with ZnO. J. Mater. Environ. Sci. 2016, 7, 1882–1897. [Google Scholar]
- Ouis, M.A. Effect of ZnO on the Bioactivity of Hench’s Derived Glasses and Corresponding Glass-Ceramic Derivatives. Silicon 2011, 3, 177–183. [Google Scholar] [CrossRef]
- Carta, J.C.D.; Pickup, D.M.; Knowles, J.C.; Ahmed, I.; Smith, M.E.; Newport, R. A structural study of sol–gel and melt-quenched phosphate-based glasses. J. Non. Cryst. Solid. 2007, 353, 1759. [Google Scholar] [CrossRef]
- Marikani, A.; Maheswaran, A.; Premanathan, M.; Amalraj, L. Synthesis and characterization of calcium phosphate based bioactive quaternary P2O5–CaO–Na2O–K2O glasses. J. Non. Cryst. Solid. 2008, 354, 3929–3934. [Google Scholar] [CrossRef]
- Lunkenheimer, P.; Rall, H.; Alkemper, J.; Fuess, H.; Böhmer, R.; Loidl, A. Ionic motion in bioactive ceramics investigated by dielectric spectroscopy. Solid State Ion. 1995, 81, 129–134. [Google Scholar] [CrossRef]
- Rao, V.H.; Prasad, P.S.; Rao, P.V.; Santos, L.F.; Veeraiah, N. Influence of Sb2O3 on tellurite based glasses for photonic applications. J. Alloys Compd. 2016, 687, 898–905. [Google Scholar] [CrossRef]
- Babu, M.M.; Prasad, P.S.; Rao, P.V.; Govindan, N.P.; Singh, R.K.; Kim, H.-W.; Veeraiah, N. Titanium incorporated Zinc-Phosphate bioactive glasses for bone tissue repair and regeneration: Impact of Ti4+ on physico-mechanical and in vitro bioactivity. Ceram. Int. 2019, 45, 23715–23727. [Google Scholar] [CrossRef]
- Abo-Naf, S.M.; Khalil, E.; El-Sayed, E.-S.M.; Zayed, H.A.; Youness, R.A. In vitro bioactivity evaluation, mechanical properties and microstructural characterization of Na2O–CaO–B2O3–P2O5 glasses. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 144, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Stefanovsky, S.V.; Stefanovsky, O.; Kadyko, M.; Presniakov, I.; Myasoedov, B. The effect of Fe2O3 substitution for Al2O3 on the phase composition and structure of sodium–aluminum–iron phosphate glasses. J. Non-Cryst. Solids 2015, 425, 138–145. [Google Scholar] [CrossRef]
- Omrani, R.O.; Krimi, S.; Videau, J.J.; Khattech, I.; El Jazouli, A.; Jemal, M. Structural and thermochemical study of Na2O–ZnO–P2O5 glasses. J. Non-Cryst. Solids 2014, 390, 5–12. [Google Scholar] [CrossRef]
- Kapoor, S.; Goel, A.; Correia, A.F.; Pascual, M.J.; Lee, H.-Y.; Kim, H.-W.; Ferreira, J.M.F. Influence of ZnO/MgO substitution on sintering, crystallisation, and bio-activity of alkali-free glass-ceramics. Mater. Sci. Eng. C 2015, 53, 252–261. [Google Scholar] [CrossRef]
- Anigrahawati, P.; Sahar, M.; Ghoshal, S. Influence of Fe3O4 nanoparticles on structural, optical and magnetic properties of erbium doped zinc phosphate glass. Mater. Chem. Phys. 2015, 155, 155–161. [Google Scholar] [CrossRef]
- Rajkumar, G.; Aravindan, S.; Rajendran, V. Structural analysis of zirconia-doped calcium phosphate glasses. J. Non-Cryst. Solids 2010, 356, 1432–1438. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, S. Structure and crystallization behavior of 50CuO–xTiO2–(50-x)P2O5 (x = 5–20) glasses. J. Non-Cryst. Solids 2017, 473, 108–113. [Google Scholar] [CrossRef]
- Ahmed, K.F.; Ibrahim, S.O.; Sahar, M.R.; Mawlud, S.Q.; Khizir, H.A. Thermal analyses, spectral characterization and structural interpretation of Nd3+/Er3+ ions co-doped TeO2–ZnCl2 glasses system. In AIP Conference Proceedings; AIP Publishing LLC: College Park, MD, USA, 2017. [Google Scholar]
- Kalita, H.; Kumar, B.P.; Konar, S.; Tantubay, S.; Mahto, M.K.; Manda, M.; Pathak, A. Sonochemically synthesized biocompatible zirconium phosphate nanoparticles for pH sensitive drug delivery application. Mater. Sci. Eng. C 2016, 60, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Oueslati-Omrani, R.; Hamzaoui, A.H. Effect of ZnO incorporation on the structural, thermal and optical properties of phosphate based silicate glasses. Mater. Chem. Phys. 2020, 242, 122461. [Google Scholar] [CrossRef]
- Amin Matori, K.; Mohd Zaid, M.H.; Quah, H.J.; Abdul Aziz, S.H.; Abdul Wahab, Z.; Mohd Ghazali, M.S. Studying the Effect of ZnO on Physical and Elastic Properties of (ZnO)x(P2O5)1–x Glasses Using Nondestructive Ultrasonic Method. Adv. Mater. Sci. Eng. 2015, 2015, 596361. [Google Scholar] [CrossRef] [Green Version]
- Januchta, K.; Youngman, R.E.; Goel, A.; Bauchy, M.; Rzoska, S.J.; Bockowski, M.; Smedskjaer, M.M. Structural origin of high crack resistance in sodium aluminoborate glasses. J. Non-Cryst. Solids 2017, 460, 54–65. [Google Scholar] [CrossRef] [Green Version]
- Yuan, K.; Sun, Y.; Lu, Y.; Liang, X.; Tian, D.; Ma, X.; Yang, D. Comparison on mechanical properties of heavily phosphorus- and arsenic-doped Czochralski silicon wafers. AIP Adv. 2018, 8, 045301. [Google Scholar] [CrossRef] [Green Version]
- Jlassi, I.; Sdiri, N.; Elhouichet, H.; Ferid, M. Raman and impedance spectroscopy methods of P2O5–Li2O–Al2O3 glass system doped with MgO. J. Alloys Compd. 2015, 645, 125–130. [Google Scholar] [CrossRef]
- Reddy, A.S.S.; Jędryka, J.; Oźga, K.; Kumar, V.R.; Purnachand, N.; Kityk, I.; Veeraiah, N. Laser stimulated third harmonic generation studies in ZnO–Ta2O5–B2O3 glass ceramics entrenched with Zn3Ta2O8 crystal phases. Opt. Mater. 2018, 76, 90–96. [Google Scholar] [CrossRef]
- Liu, H.; Chin, T.; Yung, S. FTIR and XPS studies of low-melting PbO–ZnO–P2O5 glasses. Mater. Chem. Phys. 1997, 50, 1–10. [Google Scholar] [CrossRef]
- Azmi, S.A.M.; Sahar, M.; Ghoshal, S.; Arifin, R. Modification of structural and physical properties of samarium doped zinc phosphate glasses due to the inclusion of nickel oxide nanoparticles. J. Non-Cryst. Solids 2015, 411, 53–58. [Google Scholar] [CrossRef]
- Shih, P.; Yung, S.; Chin, T. FTIR and XPS studies of P2O5–Na2O–CuO glasses. J. Non-Cryst. Solids 1999, 244, 211–222. [Google Scholar] [CrossRef]
- Resorption, B. Role of Zinc in Bone Formation and Bone resorption. J. Trace Elem. Exp. Med. 1998, 11, 119–135. [Google Scholar]
- Wajda, A.; Sitarz, M. Structural and microstructural studies of zinc-doped glasses from NaCaPO4–SiO2 system. J. Non-Cryst. Solids 2016, 441, 66–73. [Google Scholar] [CrossRef]
- Kamitakahara, M.; Ohtsuki, C.; Inada, H.; Tanihara, M.; Miyazaki, T. Effect of ZnO addition on bioactive CaO–SiO2–P2O5–CaF2 glass–ceramics containing apatite and wollastonite. Acta Biomater. 2006, 2, 467–471. [Google Scholar] [CrossRef] [PubMed]
- Müller, L.; Müller, F.A. Preparation of SBF with different HCO3- content and its influence on the composition of biomimetic apatites. Acta Biomater. 2006, 2, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Notingher, I.; Boccaccini, A.; Jones, J.R.; Maquet, V.; Hench, L. Application of Raman micro spectroscopy to the characterisation of bioactive materials. Mater. Charact. 2002, 49, 255–260. [Google Scholar] [CrossRef]
- González, P.; Serra, J.; Liste, S.; Chiussi, S.; León, B.; Pérez-Amor, M. Raman spectroscopic study of bioactive silica based glasses. J. Non-Cryst. Solids 2003, 320, 92–99. [Google Scholar] [CrossRef]
- Karakassides, B.M.A.; Saranti, A.; Koutselas, I. Preparation and structural study of binary phosphate glasses with high calcium and/or magnesium content. J. Non-Cryst. Solids 2004, 347, 69–79. [Google Scholar] [CrossRef]
- Chahine, A.; Et-Tabirou, M.; Elbenaissi, M.; Haddad, M.; Pascal, J. Effect of CuO on the structure and properties of (50−x/2)Na2O-xCuO-(50−x/2)P2O5 glasses. Mater. Chem. Phys. 2004, 84, 341–347. [Google Scholar] [CrossRef]
- Ardelean, I.; Rusu, R.; Andronache, C.; Ciobotă, V. Raman study of xMeO·(100−x)[P2O5·Li2O] (MeO⇒Fe2O3 or V2O5) glass systems. Mater. Lett. 2007, 61, 3301–3304. [Google Scholar] [CrossRef]
- Lucacel, R.C.; Ponta, O.; Simon, V. Short-range structure and in vitro behavior of ZnO–CaO–P2O5 bioglasses. J. Non-Cryst. Solids 2012, 358, 2803–2809. [Google Scholar] [CrossRef]
Glass Code | ZnO | Na2O | CaO | P2O5 |
---|---|---|---|---|
Z2 | 2 | 22 | 24 | 52 |
Z4 | 4 | 22 | 24 | 50 |
Z6 | 6 | 22 | 24 | 48 |
Z8 | 8 | 22 | 24 | 46 |
Z10 | 10 | 22 | 24 | 44 |
Sample Code | Molar Mass (g/mol) | Molar Volume (Vm) (cm3/mol) | Density (ρg) (g/cm3) | Oxygen Molar Volume (Vo) (cm3/mol) | Oxygen Packing Density (OPD) (mol/L) | Vickers Hardness Hv (GPa) | Fracture Toughness, KIC (MPa m1/2) |
---|---|---|---|---|---|---|---|
Z2 | 102.532 | 40.319 (±0.626) | 2.543 (±0.068) | 24.143 (±1.207) | 76.389 (±1.785) | 2.615 (±0.074) | 0.176 (±0.004) |
Z4 | 101.321 | 39.765 (±0.757) | 2.548 (±0.077) | 24.247 (±1.514) | 75.443 (±1.782) | 2.652 (±0.075) | 0.183 (±0.005) |
Z6 | 100.110 | 39.151 (±0.672) | 2.557 (±0.072) | 24.317 (±1.424) | 74.582 (±1.981) | 2.763 (±0.097) | 0.198 (±0.004) |
Z8 | 98.898 | 38.497 (±0.589) | 2.569 (±0.069) | 24.365 (±1.142) | 73.772 (±1.528) | 3.190 (±0.092) | 0.250 (±0.005) |
Z10 | 97.687 | 37.981 (±0.676) | 2.572 (±0.076) | 24.504 (±1.332) | 72.667 (±1.762) | 2.781 (±0.100) | 0.196 (±0.004) |
Sample code | Tg (°C) | Tc (°C) | Tm (°C) | ΔT (°C) | KH |
---|---|---|---|---|---|
Z2 | 343.31 (±0.343) | 458.73 | 716.18 | 115.42 (±1.154) | 0.4483 |
Z4 | 345.27 (±0.346) | 456.53 | 714.11 | 111.26 (±1.112) | 0.4319 |
Z6 | 346.89 (±0.347) | 459.12 | 709.86 | 112.23 (±1.122) | 0.4475 |
Z8 | 348.52 (±0.349) | 469.12 | 704.43 | 121.19 (±1.211) | 0.5154 |
Z10 | 344.63 (±0.344) | 458.98 | 699.75 | 114.35 (±1.143) | 0.4749 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohan Babu, M.; Syam Prasad, P.; Hima Bindu, S.; Prasad, A.; Venkateswara Rao, P.; Putenpurayil Govindan, N.; Veeraiah, N.; Özcan, M. Investigations on Physico-Mechanical and Spectral Studies of Zn2+ Doped P2O5-Based Bioglass System. J. Compos. Sci. 2020, 4, 129. https://doi.org/10.3390/jcs4030129
Mohan Babu M, Syam Prasad P, Hima Bindu S, Prasad A, Venkateswara Rao P, Putenpurayil Govindan N, Veeraiah N, Özcan M. Investigations on Physico-Mechanical and Spectral Studies of Zn2+ Doped P2O5-Based Bioglass System. Journal of Composites Science. 2020; 4(3):129. https://doi.org/10.3390/jcs4030129
Chicago/Turabian StyleMohan Babu, M., P. Syam Prasad, S. Hima Bindu, A. Prasad, P. Venkateswara Rao, Nibu Putenpurayil Govindan, N. Veeraiah, and Mutlu Özcan. 2020. "Investigations on Physico-Mechanical and Spectral Studies of Zn2+ Doped P2O5-Based Bioglass System" Journal of Composites Science 4, no. 3: 129. https://doi.org/10.3390/jcs4030129
APA StyleMohan Babu, M., Syam Prasad, P., Hima Bindu, S., Prasad, A., Venkateswara Rao, P., Putenpurayil Govindan, N., Veeraiah, N., & Özcan, M. (2020). Investigations on Physico-Mechanical and Spectral Studies of Zn2+ Doped P2O5-Based Bioglass System. Journal of Composites Science, 4(3), 129. https://doi.org/10.3390/jcs4030129