Polarization Parameters and Scaling Matter—How Processing Environment and Shape Factor Influence Electroactive Nanocomposite Characteristics
Abstract
:1. Introduction
1.1. Piezoelectric Composites
1.2. Carbon Nanotube Composites
2. Materials and Methods
2.1. Material Properties
2.2. Composite Bulk (Disk) and Film Preparation
2.3. Sample Characterization
3. Results
3.1. Variation of Polarization Voltage-Contact and Corona Polarization in Bulk Disks
3.2. Variation of Temperature-Contact and Corona Polarization in Bulk Disks
3.3. Variation of Polarization Voltage in Corona and Contact Poled Thick Films
3.4. Variation of Polarization Temperature in Corona and Contact Poled Thick Films
3.5. SEM Characterization of Films
3.6. Influence of Sample Shape and Polarization Voltage
4. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Haertling, G.H. Ferroelectric Ceramics: History and Technology. J. Am. Ceram. Soc. 1999, 82, 797–818. [Google Scholar] [CrossRef]
- Zhu, Z.W.; To, S.; Li, Y.M.; Zhu, W.L.; Bian, L.X. External force estimation of a piezo-actuated compliant mechanism based on a fractional order hysteresis model. Mech. Syst. Signal Process. 2018, 110, 296–306. [Google Scholar] [CrossRef]
- Banerjee, S.; Cook-Chennault, K.A. Influence of Al Particle Size and Lead Zirconate Titanate (PZT) Volume Fraction on the Dielectric Properties of PZT-Epoxy-Aluminum Composites. J. Eng. Mater. Technol. 2011, 133. [Google Scholar] [CrossRef]
- Lucas, G.B.; de Castro, B.A.; Rocha, M.A.; Andreoli, A.L. Three-phase induction motor loading estimation based on Wavelet Transform and low-cost piezoelectric sensors. Measurement 2020, 164. [Google Scholar] [CrossRef]
- Kubba, A.E.; Jiang, K. Efficiency Enhancement of a Cantilever-Based Vibration Energy Harvester. Sensors 2014, 14, 188–211. [Google Scholar] [CrossRef] [Green Version]
- Lethiecq, M.; Levassort, F.; Certon, D.; Tran-Huu-Hue, L. Piezoelectric Transducer Design for Medical Diagnosis and NDE. In Piezoelectric and Acoustic Materials for Transducer Applications; Safari, A., Akdoğan, E.K., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 191–215. [Google Scholar] [CrossRef]
- Buncic, N.; Kabasi, A.; Cakaric, T.; Bilusic, A. Prototyping of a High Frequency Phased Array Ultrasound Transducer on a Piezoelectric Thick Film. Inf. Midem J. Microelectron. Electron. Compon. Mater. 2019, 49, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Yuan, J.; Guan, D.; Chen, W. Application of piezoelectric fiber composite actuator to aircraft wing for aerodynamic performance improvement. Sci. China Technol. Sci. 2011, 54, 395–402. [Google Scholar] [CrossRef]
- Dong, T.; Kim, N.H. Cost-Effectiveness of Structural Health Monitoring in Fuselage Maintenance of the Civil Aviation Industry. Aerospace 2018, 5, 87. [Google Scholar] [CrossRef] [Green Version]
- Elghandour, E.I. Experimental study of cantilevered composite beam with different stacking sequences. In 2001: A Materials and Processes Odyssey, Books 1 and 2; Repecka, L., Saremi, F.F., Eds.; Nasampe.org: Long Beach, CA, USA, 2001; Volume 46, pp. 740–751. [Google Scholar]
- Saravanos, D.A. Passively damped laminated piezoelectric shell structures with integrated electric networks. AIAA J. 2000, 38, 1260–1268. [Google Scholar] [CrossRef] [Green Version]
- Chalasani, S.; Conrad, J.M. A survey of energy harvesting sources for embedded systems. In Proceedings of the Southeastcon, Huntsville, AL, USA, 3–6 April 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 442–447. [Google Scholar]
- Guillon, O.; Thiebaud, F.; Perreux, D. Tensile fracture of soft and hard PZT. Int. J. Fract. 2002, 117, 235–246. [Google Scholar] [CrossRef]
- Banerjee, S.; Du, W.; Wang, L.; Cook-Chennault, K.A. Fabrication of dome-shaped PZT-epoxy actuator using modified solvent and spin coating technique. J. Electroceram. 2013, 31, 148–158. [Google Scholar] [CrossRef]
- Pascariu, V.; Padurariu, L.; Avadanei, O.; Mitoseriu, L. Dielectric properties of PZT–epoxy composite thick films. J. Alloy. Compd. 2013, 574, 591–599. [Google Scholar] [CrossRef]
- Arlt, K.; Wegener, M. Piezoelectric PZT/PVDF-copolymer 0-3 composites: Aspects on film preparation and electrical poling. Dielectr. Electr. Insul. IEEE Trans. 2010, 17, 1178–1184. [Google Scholar] [CrossRef]
- Burianova, L.; Hana, P.; Panos, S.; Kulek, J.; Tyagur, Y.I. Piezoelectric, dielectric and pyroelectric properties of 0-3 ceramic-polymer composites. Ferroelectrics 2000, 241, 59–66. [Google Scholar] [CrossRef]
- Chamankar, N.; Khajavi, R.; Yousefi, A.A.; Rashidi, A.; Golestanifard, F. A flexible piezoelectric pressure sensor based on PVDF nanocomposite fibers doped with PZT particles for energy harvesting applications. Ceram. Int. 2020, 46, 19669–19681. [Google Scholar] [CrossRef]
- Pessia, Z.R.; Cunningham, C.A.; Krech, E.D.; Friis, E.A. Power amplification via compliant layer interdigitation and dielectrophoretic structuring of PZT particle composites. Smart Mater. Struct. 2020, 29. [Google Scholar] [CrossRef]
- Choi, H.-W.; Young-Woo, H.; Lee, J.-H.; Kim, J.-J.; Lee, H.-Y.; Park, E.-T.; Chung, Y.-K. Effects of BaTiO3 on dielectric behavior of BaTiO3-Ni-polymethyl methacrylate composites. Appl. Phys. Lett. 2006, 89, 132910–132913. [Google Scholar] [CrossRef]
- Dang, Z.M.; Fan, L.Z.; Shen, Y.; Nan, C.W. Dielectric behavior of novel three-phase MWNTs/BaTiO3/PVDF composites. Mater. Sci. Eng. B 2003, 103, 140–144. [Google Scholar] [CrossRef]
- Dang, Z.M.; Shen, Y.; Nan, C.W. Dielectric behavior of three-phase percolative Ni--BaTiO[sub 3]/polyvinylidene fluoride composites. Appl. Phys. Lett. 2002, 81, 4814–4816. [Google Scholar] [CrossRef]
- Dang, Z.-M.; Yao, S.-H.; Yuan, J.-K.; Bai, J. Tailored Dielectric Properties based on Microstructure Change in BaTiO3-Carbon Nanotube/Polyvinylidene Fluoride Three-Phase Nanocomposites. J. Phys. Chem. C 2010, 114, 13204–13209. [Google Scholar] [CrossRef]
- Dietze, M.; Es-Souni, M. Structural and functional properties of screen-printed PZT–PVDF-TrFE composites. Sens. Actuators A Phys. 2008, 143, 329–334. [Google Scholar] [CrossRef]
- Banerjee, S.; Kappera, R.; Chhowalla, M.; Cook-Chennault, K.A. Multi Walled Carbon Nanotube based Flexible Multi-morph Composite Thick Films with Graphene Electrodes. Energy Environ. Focus 2013, in press. [Google Scholar] [CrossRef]
- Newnham, R.E.; Skinner, D.P.; Cross, L.E. Connectivity and piezoelectric-pyroelectric composites. Mater. Res. Bull. 1978, 13, 525–536. [Google Scholar] [CrossRef]
- Pilgrim, S.M.; Newnham, R.E. 3:0: A new composite connectivity. Mater. Res. Bull. 1986, 21, 1447–1454. [Google Scholar] [CrossRef]
- Kuo, D.-H.; Chang, C.-C.; Su, T.-Y.; Wang, W.-K.; Lin, B.-Y. Dielectric behaviours of multi-doped BaTiO3/epoxy composites. J. Eur. Ceram. Soc. 2001, 21, 1171–1177. [Google Scholar] [CrossRef]
- Cook-Chennault, K.A.; Thambi, N.; Bitetto, M.A.; Hameyie, E.B. Piezoelectric Energy Harvesting: A Green and Clean Alternative for Sustained Power Production. Bull. Sci. Technol. Soc. 2008, 28, 496–509. [Google Scholar] [CrossRef]
- Cook-Chennault, K.A.; Thambi, N.; Sastry, A.M. Powering MEMS portable devices—A review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater. Struct. 2008, 17, 043001. [Google Scholar] [CrossRef] [Green Version]
- Dan, Y.; Lu, Y.; Kybert, N.J.; Luo, Z.; Johnson, A.T.C. Intrinsic Response of Graphene Vapor Sensors. Nano Lett. 2009, 9, 1472–1475. [Google Scholar] [CrossRef] [Green Version]
- Blanas, P.; Das-Gupta, K. Composite Piezoelectric Materials for Health Monitoring of Composite Structures. In Proceedings of the MRS Proceedings; Materials Research Society: Warrendale, PA, USA, 2000. [Google Scholar]
- Doyle, W.T. Particle clustering and dielectric Enhancement in Percolating metal-insulator composites. J. Appl. Phys. 1995, 78, 6165–6169. [Google Scholar] [CrossRef]
- Doyle, W.T.; Jacobs, I.S. The influence of particle-shape on dielectric enhancement in metal-insulator composites. J. Appl. Phys. 1992, 71, 3926–3936. [Google Scholar] [CrossRef]
- Gerasimov, G.N.; Gromov, V.F.; Trakhtenberg, L.I. Physicochemical and Electrophysical Properties of Metal/Semiconductor Containing Nanostructured Composites. Russ. J. Phys. Chem. A 2018, 92, 1087–1098. [Google Scholar] [CrossRef]
- Kazak, N.S.; Agabekov, V.E.; Kurilkina, S.N.; Belyi, V.N. Formation and Properties of New Types of Metal-Dielectric Nanostructures for Creating Optical Metamaterials. Semiconductors 2018, 52, 2099–2102. [Google Scholar] [CrossRef]
- Wang, J.; Chang, A.S.; Sherfield, S.N.; Golobic, A.M.; Hunter, S.L.; Duoss, E.B.; Matthews, M.J. Electrical Properties of Copper-loaded Polymer Composites. In Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, Civil Infrastructure, and Transportation XIII, Denver, CO, USA, 1 April 2019; Yu, A.L., Wu, T.Y., Shull, H.F., Eds.; SPIE: Bellingham, WA, USA, 2019; Volume 10971. [Google Scholar]
- Bai, Y.; Cheng, Z.Y.; Bharti, V.; Xu, H.S.; Zhang, Q.M. High-dielectric-constant ceramic-powder polymer composites. Appl. Phys. Lett. 2000, 76, 3804–3806. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, D.; Wu, K. Cement-Based 0-3 Piezoelectric Composites. J. Am. Ceram. Soc. 2002, 85, 305–313. [Google Scholar] [CrossRef]
- Ma, M.; Wang, X. Preparation, microstructure and properties of epoxy-based composites containing carbon nanotubes and PMN-PZT piezoceramics as rigid piezo-damping materials. Mater. Chem. Phys. 2009, 116, 191–197. [Google Scholar] [CrossRef]
- Lu, X.; Zou, X.W.; Shen, J.L.; Zhang, L.; Jin, L.; Cheng, Z.Y. High energy density with ultrahigh discharging efficiency obtained in ceramic-polymer nanocomposites using a non-ferroelectric polar polymer as matrix. Nano Energy 2020, 70. [Google Scholar] [CrossRef]
- Sundar, U.; Lao, Z.C.; Cook-Chennault, K. Enhanced Dielectric Permittivity of Optimized Surface Modified of Barium Titanate Nanocomposites. Polymers 2020, 12, 827. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Zhang, R.; Wang, Z.; Cao, W. Electromechanical coupling coefficient k31eff for arbitrary aspect ratio resonators made of [001] and [011] poled (1−x)Pb(Mg1/3Nb2/3)O3–xPbTiO3 single crystals. J. Appl. Phys. 2009, 105, 064104. [Google Scholar] [CrossRef] [Green Version]
- Stein, S.C.; Liang, C.; Rogers, C.A. Power consumption of piezoelectric actuators driving a simply supported beam considering fluid coupling. J. Acoust. Soc. Am. 1994, 96, 1598–1604. [Google Scholar] [CrossRef]
- Zhao, P.; Li, J. Investigation of orientation effects on the electro-mechanical coupling behavior of 1–3 piezoelectric composites under compression. Smart Mater. Struct. 2009, 18, 104011. [Google Scholar] [CrossRef]
- Rjafallah, A.; Hajjaji, A.; Belhora, F.; El Ballouti, A.; Touhtouh, S.; Guyomar, D.; Boughaleb, Y. PZT ceramic particles/polyurethane composites formalism for mechanical energy harvesting. Eur. Phys. J. Appl. Phys. 2020, 89. [Google Scholar] [CrossRef]
- Topolov, V.Y.; Isaeva, A.N.; Bisegna, P. Novel lead-free composites with two porosity levels: Large piezoelectric anisotropy and high sensitivity. J. Phys. D Appl. Phys. 2020, 53. [Google Scholar] [CrossRef]
- Gong, H.; Zhang, Y.; Quan, J.; Che, S. Preparation and properties of cement based piezoelectric composites modified by CNTs. Curr. Appl. Phys. 2011, 11, 653–656. [Google Scholar] [CrossRef]
- Mohammadabadi, A.; Dugnani, R. Design and Evaluation of a Novel Low Acoustic Impedance-Based PZT Transducer for Detecting the Near-Surface Defects. Int. J. Eng. Technol. Innov. 2019, 9, 196–211. [Google Scholar]
- Xu, L.F.; Yu, T.C.; Feng, X.; Yang, C.P.; Chen, Y.; Chen, W.; Zhou, J. Dimension dependence of thickness resonance behavior of piezoelectric fiber composites. Mater. Chem. Phys. 2018, 218, 34–38. [Google Scholar] [CrossRef]
- Seema, A.; Dayas, K.R.; Varghese, J.M. PVDF-PZT-5H composites prepared by hot press and tape casting techniques. J. Appl. Polym. Sci. 2007, 106, 146–151. [Google Scholar] [CrossRef]
- Senthilkumar, R.; Sridevi, K.; Venkatesan, J.; Annamalai, V.; Vijaya, M.S. Investigations on Ferroelectric PZT-PVDF Composites of 0–3 Connectivity. Ferroelectrics 2005, 325, 121–130. [Google Scholar] [CrossRef]
- Serrano-Garcia, W.; Jayathilaka, W.; Chinnappan, A.; Tran, T.Q.; Baskar, C.; Thomas, S.W.; Ramakrishna, S. Nanocomposites for electronic applications that can be embedded for textiles and wearables. Sci. China-Technol. Sci. 2019, 62, 895–902. [Google Scholar] [CrossRef]
- Song, X.; He, L.; Yang, W.H.; Wang, Z.; Chen, Z.Y.; Guo, J.; Wang, H.; Chen, L. Additive Manufacturing of Bi-Continuous Piezocomposites With Triply Periodic Phase Interfaces for Combined Flexibility and Piezoelectricity. J. Manuf. Sci. Eng. Trans. ASME 2019, 141. [Google Scholar] [CrossRef]
- Satish, B.; Sridevi, K.; Vijaya, M.S. Study of piezoelectric and dielectric properties of ferroelectric PZT-polymer composites prepared by hot-press technique. J. Phys. D Appl. Phys. 2002, 35, 2048. [Google Scholar] [CrossRef]
- Song, Y.; Zhao, Z.; Yu, W.; Li, B.; Chen, X. Morphological structures of poly(vinylidene fluoride)/montmorillonite nanocomposites. Sci. China Ser. B Chem. 2007, 50, 790–796. [Google Scholar] [CrossRef]
- Hou, S.; Yang, X.Y.; Fei, C.L.; Sun, X.H.; Chen, Q.; Lin, P.F.; Li, D.; Yang, Y.T.; Zhou, Q.F. Fabrication of PMN-PT/Epoxy 2-2 Composite Ultrasonic Transducers and Analysis Based on Equivalent Circuit Model. J. Electron. Mater. 2018, 47, 6842–6847. [Google Scholar] [CrossRef]
- Ono, Y.; Kobayashi, M.; Levesque, D.; Song, L.; Sivagnanasundaram, M.; Jen, C.K. High frequency (>30 MHz) flexible broadband transducers. In 2007 IEEE Ultrasonics Symposium Proceedings; IEEE: Piscataway, NJ, USA, 2007; pp. 92–95. [Google Scholar] [CrossRef]
- Park, C.Y.; Sung, J.H.; Jeong, J.S. Design and fabrication of ultrasound linear array transducer based on polarization inversion technique. Sens. Actuators A Phys. 2018, 280, 484–494. [Google Scholar] [CrossRef]
- Lee, H.J.; Zhang, S.J. Design of Low-Loss 1-3 Piezoelectric Composites for High-Power Transducer Applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2012, 59, 1969–1975. [Google Scholar] [CrossRef] [PubMed]
- Uchino, K. Piezoelectric Composite Materials. In Advanced Piezoelectric Materials: Science and Technology, 2nd ed.; Uchino, K., Ed.; Woodhead Publishing: Cambridge, UK, 2017; pp. 353–382. [Google Scholar] [CrossRef]
- Li, Z.; Dong, B.; Zhang, D. Influence of polarization on properties of 0–3 cement-based PZT composites. Cem. Concr. Compos. 2005, 27, 27–32. [Google Scholar] [CrossRef]
- Thomas, M.; Folliard, K.; Drimalas, T.; Ramlochan, T. Diagnosing delayed ettringite formation in concrete structures. Cem. Concr. Res. 2008, 38, 841–847. [Google Scholar] [CrossRef]
- Yadav, K.; Smelser, C.W.; Jacob, S.; Blanchetiere, C.; Callender, C.L.; Albert, J. Simultaneous corona poling of multiple glass layers for enhanced effective second-order optical nonlinearities. Appl. Phys. Lett. 2011, 99, 031109. [Google Scholar] [CrossRef]
- Bao, W.S.; Meguid, S.A.; Zhu, Z.H.; Pan, Y.; Weng, G.J. A novel approach to predict the electrical conductivity of multifunctional nanocomposites. Mech. Mater. 2012, 46, 129–138. [Google Scholar] [CrossRef]
- Maiti, S.; Suin, S.; Shrivastava, N.K.; Khatua, B.B. Low percolation threshold in melt-blended PC/MWCNT nanocomposites in the presence of styrene acrylonitrile (SAN) copolymer: Preparation and characterizations. Synth. Met. 2013, 165, 40–50. [Google Scholar] [CrossRef]
- Nagarajan, V.; Ganpule, C.S.; Nagaraj, B.; Aggarwal, S.; Alpay, S.P.; Roytburd, A.L.; Williams, E.D.; Ramesh, R. Effect of mechanical constraint on the dielectric and piezoelectric behavior of epitaxial Pb(Mg1/3Nb2/3)O3(90%)–PbTiO3(10%) relaxor thin films. Appl. Phys. Lett. 1999, 75, 4183–4185. [Google Scholar] [CrossRef] [Green Version]
- Kok, S.L.; White, N.M.; Harris, N.R. Free-standing thick-film piezoelectric device. Electron. Lett. 2008, 44, 280–282. [Google Scholar] [CrossRef] [Green Version]
- Sencadas, V.; Lanceros-Mendez, S.; Filho, R.G.; Chinaglia, D.L.; Pouzada, A.S. Influence of the processing conditions and corona poling on the morphology of beta;-PVDF. In Proceedings of the 2005 12th International Symposium on Electrets, Salvador, Brazil, 11–14 September 2005; pp. 161–164. [Google Scholar]
- Charoonsuk, T.; Sriphan, S.; Nawanil, C.; Chanlek, N.; Vittayakorn, W.; Vittayakorn, N. Tetragonal BaTiO3 nanowires: A template-free salt-flux-assisted synthesis and its piezoelectric response based on mechanical energy harvesting. J. Mater. Chem. C 2019, 7, 8277–8286. [Google Scholar] [CrossRef]
- Li, W.Y.; Song, Z.Q.; Qian, J.; Tan, Z.Y.; Chu, H.Y.; Wu, X.Y.; Nie, W.; Ran, X.H. Enhancing conjugation degree and interfacial interactions to enhance dielectric properties of noncovalent functionalized graphene/poly (vinylidene fluoride) composites. Carbon 2019, 141, 728–738. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, Y.; Jin, L.; Chen, J.Y.; Jiang, Z.H.; Zhang, Y.H. High-performance piezo-damping materials based on CNTs/BaTiO3/F-PAEK-b-PDMS under high temperature steam conditions. Appl. Surf. Sci. 2018, 452, 429–436. [Google Scholar] [CrossRef]
- Ounaies, Z.; Park, C.; Harrison, J.; Lillehei, P. Evidence of Piezoelectricity in SWNT-Polyimide and SWNT-PZT-Polyimide Composites. J. Thermoplast. Compos. Mater. 2008, 21, 393–409. [Google Scholar] [CrossRef]
- Baughman, R.H.; Zakhidov, A.A.; de Heer, W.A. Carbon Nanotubes—The Route Toward Applications. Science 2002, 297, 787–792. [Google Scholar] [CrossRef] [Green Version]
- Frank, S.; Poncharal, P.; Wang, Z.L.; Heer, W.A.D. Carbon Nanotube Quantum Resistors. Science 1998, 280, 1744–1746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, W.; Bockrath, M.; Bozovic, D.; Hafner, J.H.; Tinkham, M.; Park, H. Fabry—Perot interference in a nanotube electron waveguide. Nature 2001, 411, 665–669. [Google Scholar] [CrossRef]
- Gao, G.; Çagin, T.; Goddard, W.A., III. Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes. Nanotechnology 1998, 9, 184. [Google Scholar] [CrossRef] [Green Version]
- Biercuk, M.J.; Llaguno, M.C.; Radosavljevic, M.; Hyun, J.K.; Johnson, A.T.; Fischer, J.E. Carbon nanotube composites for thermal management. Appl. Phys. Lett. 2002, 80, 2767–2769. [Google Scholar] [CrossRef]
- Chen, H.; Muthuraman, H.; Stokes, P.; Zou, J.; Liu, X.; Wang, J.; Huo, Q.; Khondaker, S.I.; Zhai, L. Dispersion of carbon nanotubes and polymer nanocomposite fabrication using trifluoroacetic acid as a co-solvent. Nanotechnology 2007, 18, 415606. [Google Scholar] [CrossRef]
- Schmidt, R.H.; Kinloch, I.A.; Burgess, A.N.; Windle, A.H. The Effect of Aggregation on the Electrical Conductivity of Spin-Coated Polymer/Carbon Nanotube Composite Films. Langmuir 2007, 23, 5707–5712. [Google Scholar] [CrossRef] [PubMed]
- Bao, W.S.; Meguid, S.A.; Zhu, Z.H.; Weng, G.J. Tunneling resistance and its effect on the electrical conductivity of CNT nanocomposites. J. Appl. Phys. 2012, 111, 093726. [Google Scholar] [CrossRef]
- Leon, V.; Parret, R.; Almairac, R.; Alvarez, L.; Babaa, M.R.; Doyle, B.P.; Ienny, P.; Parent, P.; Zahab, A.; Bantignies, J.L. Spectroscopic study of double-walled carbon nanotube functionalization for preparation of carbon nanotube/epoxy composites. Carbon 2012, 50, 4987–4994. [Google Scholar] [CrossRef] [Green Version]
- Yao, S.-H.; Dang, Z.-M.; Jiang, M.-J.; Bai, J. BaTiO3-carbon nanotube/polyvinylidene fluoride three-phase composites with high dielectric constant and low dielectric loss. Appl. Phys. Lett. 2008, 93, 182905. [Google Scholar] [CrossRef]
- Bauhofer, W.; Kovacs, J.Z. A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Technol. 2009, 69, 1486–1498. [Google Scholar] [CrossRef]
- Lu, X.X.; Zhang, A.N.; Dubrunfaut, O.; He, D.L.; Pichon, L.; Bai, J.B. Numerical modeling and experimental characterization of the AC conductivity and dielectric properties of CNT/polymer nanocomposites. Compos. Sci. Technol. 2020, 194. [Google Scholar] [CrossRef]
- Berhan, L.; Sastry, A.M. Modeling percolation in high-aspect-ratio fiber systems. II. The effect of waviness on the percolation onset. Phys. Rev. E 2007, 75. [Google Scholar] [CrossRef] [Green Version]
- Berhan, L.; Sastry, A.M. Modeling percolation in high-aspect-ratio fiber systems. I. Soft-core versus hard-core models. Phys. Rev. E 2007, 75. [Google Scholar] [CrossRef] [Green Version]
- Tian, S.; Wang, X. Fabrication and performances of epoxy/multi-walled carbon nanotubes/piezoelectric ceramic composites as rigid piezo-damping materials. J. Mater. Sci. 2008, 43, 4979–4987. [Google Scholar] [CrossRef]
- Heimann, M.; Wirts-Ruetters, M.; Boehme, B.; Wolter, K.J. Investigations of carbon nanotubes epoxy composites for electronics packaging. In Proceedings of the 58th Electronic Components and Technology Conference, Lake Buena Vista, FL, USA, 27–30 May 2008; pp. 1731–1736. [Google Scholar]
- Sun, L.-H.; Ounaies, Z.; Gao, X.-L.; Whalen, C.A.; Yang, Z.-G. Preparation, characterization, and modeling of carbon nanofiber/epoxy nanocomposites. J. Nanomater. 2011, 2011, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Hermant, M.C. Manipulating the Percolation Threshold of Carbon Nanotubes in Polymeric Composites. Ph.D. Thesis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Cambridge, MA, USA, 2009. [Google Scholar]
- Cob, J.; Oliva-Aviles, A.I.; Aviles, F.; Oliva, A.I. Influence of concentration, length and orientation of multiwall carbon nanotubes on the electromechanical response of polymer nanocomposites. Mater. Res. Express 2019, 6. [Google Scholar] [CrossRef]
- Li, T.T.; Zhao, G.Q.; Wang, G.L. Effect of Preparation Methods on Electrical and Electromagnetic Interference Shielding Properties of PMMA/MWCNT Nanocomposites. Polym. Compos. 2019, 40, E1786–E1800. [Google Scholar] [CrossRef]
- Hur, O.N.; Ha, J.H.; Park, S.H. Strain-Sensing Properties of Multi-Walled Carbon Nanotube/Polydimethylsiloxane Composites with Different Aspect Ratio and Filler Contents. Materials 2020, 13, 2431. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, P.; Silva, J.; Paiva, M.C.; van Hattum, F.; Lanceros-Mendez, S. Comparative analyses of the electrical properties and dispersion level of VGCNF and MWCNT: Epoxy composites. J. Polym. Sci. Part B Polym. Phys. 2012, 50, 1253–1261. [Google Scholar] [CrossRef]
- Wang, L.; Wang, H.; Li, B.; Guo, Z.; Luo, J.C.; Huang, X.W.; Gao, J.F. Highly electrically conductive polymer composite with a novel fiber-based segregated structure. J. Mater. Sci. 2020, 55, 11727–11738. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Zang, C.G.; Jiao, Q.J. Electrical, thermal, and mechanical properties of silicone foam composites filled with carbon-based nanofillers. J. Appl. Polym. Sci. 2020, 137. [Google Scholar] [CrossRef]
- Arsecularatne, J.A.; Zhang, L.C. Carbon Nanotube Reinforced Ceramic Composites and their Performance. Recent Pat. Nanotechnol. 2007, 1, 176–185. [Google Scholar] [CrossRef]
- Zeng, X.; Xu, X.; Shenai, P.M.; Kovalev, E.; Baudot, C.; Mathews, N.; Zhao, Y. Characteristics of the Electrical Percolation in Carbon Nanotubes/Polymer Nanocomposites. J. Phys. Chem. C 2011, 115, 21685–21690. [Google Scholar] [CrossRef]
- McKenna, E.M.; Lin, A.S.; Mickelson, A.R.; Dinu, R.; Jin, D. Comparison of r33 values for AJ404 films prepared with parallel plate and corona poling. J. Opt. Soc. Am. B 2007, 24, 2888–2892. [Google Scholar] [CrossRef]
- Wegener, M.; Arlt, K. PZT/P(VDF-HFP) 0–3 composites as solvent-cast thin films: Preparation, structure and piezoelectric properties. J. Phys. D Appl. Phys. 2008, 41, 165409. [Google Scholar] [CrossRef]
- Park, H.; Brown, P.R.; Bulović, V.; Kong, J. Graphene As Transparent Conducting Electrodes in Organic Photovoltaics: Studies in Graphene Morphology, Hole Transporting Layers, and Counter Electrodes. Nano Lett. 2011, 12, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Guan, Y.; Hu, Y.; Lei, Y.; Song, Y.; Lin, Y.; Nan, C.-W. Dielectric behavior of graphene/BaTiO3/polyvinylidene fluoride nanocomposite under high electric field. Appl. Phys. Lett. 2013, 103, 072906. [Google Scholar] [CrossRef]
- Zepu, W.; Nelson, J.K.; Jianjun, M.; Linhardt, R.J.; Schadler, L.S.; Hillborg, H.; Su, Z. Effect of high aspect ratio filler on dielectric properties of polymer composites: A study on barium titanate fibers and graphene platelets. Dielectr. Electr. Insul. IEEE Trans. 2012, 19, 960–967. [Google Scholar] [CrossRef] [Green Version]
- Qi, L.; Lee, B.I.; Samuels, W.D.; Exarhos, G.J.; Parler, S.G. Three-phase percolative silver–BaTiO3–epoxy nanocomposites with high dielectric constants. J. Appl. Polym. Sci. 2006, 102, 967–971. [Google Scholar] [CrossRef]
- Kudimova, A.; Nasedkin, A. Analysis of porosity influence on the effective moduli of ceramic matrix PZT composite using the simplified finite element model. J. Adv. Dielectr. 2019, 9. [Google Scholar] [CrossRef]
- Haghgoo, M.; Ansari, R.; Hassanzadeh-Aghdam, M.K.; Darvizeh, A. Fully coupled thermo-magneto-electro-elastic properties of unidirectional smart composites with a piezoelectric interphase. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2019, 233, 2813–2829. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, Y.J. High performance flexible piezoelectric pressure sensor based on CNT-sdoped 0-3 ceramic-epoxy nanocomposites. Mater. Des. 2018, 151, 133–140. [Google Scholar] [CrossRef]
- Banerjee, S.; Cook-Chennault, K.A. An investigation into the influence of electrically conductive particle size on electromechanical coupling and effective dielectric strain coefficients in three phase composite piezoelectric polymers. Compos. Part A Appl. Sci. Manuf. 2012, 43, 1612–1619. [Google Scholar] [CrossRef]
- Sappati, K.K.; Bhadra, S. Flexible Piezoelectric 0-3 PZT-PDMS Thin Film for Tactile Sensing. IEEE Sens. J. 2020, 20, 4610–4617. [Google Scholar] [CrossRef]
- Esslinger, S.; Geller, S.; Hohlfeld, K.; Gebhardt, S.; Michaelis, A.; Gude, M.; Schonecker, A.; Neumeister, P. Novel poling method for piezoelectric 0-3 composites and transfer to series production. Sens. Actuators A Phys. 2018, 270, 231–239. [Google Scholar] [CrossRef]
- Zhang, H.M.; He, X.D.; Yang, F.; Hao, L.F.; Xu, Z.H.; Wang, R.G. Piezoelectric Modal Damping Performance of 0-3 piezoelectric Composite With Conducting Phase: Numerical Analysis and Experiments. Polym. Polym. Compos. 2014, 22, 261–268. [Google Scholar] [CrossRef]
- Banerjee, S.; Du, W.; Sundar, U.; Cook-Chennault, K.A. Piezoelectric and Dielectric Characterization of MWCNT-Based Nanocomposite Flexible Films. J. Nanomater. 2018, 2018. [Google Scholar] [CrossRef]
- Banerjee, S.; Cook-Chennault, K.A.; Du, W.; Sundar, U.; Halim, H.; Tang, A. Piezoelectric and dielectric characterization of corona and contact poled PZT-epoxy-MWCNT bulk composites. Smart Mater. Struct. 2016, 25. [Google Scholar] [CrossRef]
- Yamada, T.; Ueda, T.; Kitayama, T. PIEZOELECTRICITY OF A HIGH-CONTENT LEAD ZIRCONATE TITANATE POLYMER COMPOSITE. J. Appl. Phys. 1982, 53, 4328–4332. [Google Scholar] [CrossRef]
- Nan, C.W.; Weng, G.J. Influence of polarization orientation on the effective properties of piezoelectric composites. J. Appl. Phys. 2000, 88, 416–423. [Google Scholar] [CrossRef]
Electrically Conductive Filler | Composite/Fabrication Method | Percolation (%, Vol. Fraction) |
---|---|---|
MWCNT (aspect ratio = 3333–6250) [93] | MWCNT/polymethyl methacrylate solution melt blending with compression molding | 1.15% |
MWCNT/polymethyl methacrylate solution blending with melt compounding | 0.25% | |
MWCNT/polymethyl methacrylate solution blending with compression molding | 0.55% | |
MWCNT (aspect ratio = ~86.7) [92] | Fragmented MWCNTs/PMMA/ solution cast | 0.11% |
MWCNT (aspect ratio = 250–1500) [96] | Electro-spun polystyrene fibers decorated with MWCNTs, followed by hot press | 0.084% |
MWCNT (aspect ratio = 2400) [94] | MWCNT/PDMS three-roll milling method | 0.027% |
MWCNT (aspect ratio = 900) [94] | MWCNT/PDMS three-roll milling method | 0.29% |
MWCNT (aspect ratio = 2000) [97] | Functional nanocarbon-based fillers made of MWCNTs and graphene oxide within a silicone foam | 10% |
MWCNT (aspect ratio = 157.9) [95] | MWCNTs/two-part epoxy (Epikote Resin 862 and Ethacure 100 Curative) | 6.9% |
MWCNT (aspect ratio = 400) [83] | MWCNT-PVDF/sol-gel and hot molding | 1.0% |
MWCNT(aspect ratio ~ 100) [91] | MWCNT-PMMMA/compression molding | 2.4% |
SWCNT (aspect ratio ~ 100) [91] | SWCNT-PMMA/compression molding | 3.4% |
SWCNT (aspect ratio ~ 1000) [73] | SWCNT-PZT-PMMA/solution casting | 0.8% |
CNT (aspect ratio ~ 100) [98] | CNT-alumina/colloidal processing | 1.2% |
MWCNT (aspect ratio ~ 99) [88] | MWCNT-epoxy/sol-gel sintering | 1–1.5% |
Double Walled CNTs (aspect ratio >1000) [82] | CNT-epoxy/vacuum sintering | 0.25% |
MWCNT (aspect ratio >100) [99] | MWCNT-epoxy/sol-gel sintering | 3.2% |
CNT (aspect ratio = 200–1000) [89] | CNT-epoxy/sol-gel sintering | 0.5–1.5% |
Material | Dielectric Constant (ε’) | Piezoelectric Strain d33/d31 (pC/N) | Dielectric Loss (tan δ) | Young’s Modulus (1010 N/m2) | Density (kg/m3) |
---|---|---|---|---|---|
PZT | 1850 @ 110 Hz (measured) | 400/175 | ≤2.50 | 6.4 | 7500 |
Epoxy | 2.9 @ 110 Hz (measured) | N/A | ~1 | 0.15–0.20 | 1160 (wet state) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banerjee, S.; Cook-Chennault, K.A. Polarization Parameters and Scaling Matter—How Processing Environment and Shape Factor Influence Electroactive Nanocomposite Characteristics. J. Compos. Sci. 2020, 4, 141. https://doi.org/10.3390/jcs4030141
Banerjee S, Cook-Chennault KA. Polarization Parameters and Scaling Matter—How Processing Environment and Shape Factor Influence Electroactive Nanocomposite Characteristics. Journal of Composites Science. 2020; 4(3):141. https://doi.org/10.3390/jcs4030141
Chicago/Turabian StyleBanerjee, S., and K. A. Cook-Chennault. 2020. "Polarization Parameters and Scaling Matter—How Processing Environment and Shape Factor Influence Electroactive Nanocomposite Characteristics" Journal of Composites Science 4, no. 3: 141. https://doi.org/10.3390/jcs4030141
APA StyleBanerjee, S., & Cook-Chennault, K. A. (2020). Polarization Parameters and Scaling Matter—How Processing Environment and Shape Factor Influence Electroactive Nanocomposite Characteristics. Journal of Composites Science, 4(3), 141. https://doi.org/10.3390/jcs4030141