Studies on Mechanical, Thermal and Morphological Properties of Betel Nut Husk Nano Cellulose Reinforced Biodegradable Polymer Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analysis of the Constituent of Betel Nut Husk Fiber
2.1.1. Estimation of Aqueous Extract
2.1.2. Estimation of Fatty and Waxy Matters
2.1.3. Estimation of Pectic Matters
2.1.4. Estimation of Lignin
2.1.5. Estimation of α-Cellulose and Hemicellulose
2.2. Extraction of Cellulose from Betel Nut Husk Fibers
2.3. Preparation of Nanocellulose
2.4. Preparation of Cellulose and Nanocellulose Reinforced Polyvinyle Alchohol Composites
2.5. Characterization of Betel Nut Cellulose, Nanocellulose and Composites
2.5.1. Particle Size and Zeta Potential Measurement
2.5.2. FTIR Spectroscopy
2.5.3. Scanning Electron Microscopy (SEM)
2.6. Mechanical Properties of Composites
Tensile Properties of the Composites
2.7. Thermal Properties of Composites
3. Results and Discussion
3.1. Chemical Constituent of Betel Nut Husk Fiber
3.2. Characterization of Cellulose and Nanocellulose
FTIR Analysis
3.3. Scanning Electron Microscopy Analysis (SEM)
3.4. Measurement of Particle Size and Zeta Potential of Nanocellulose
3.5. Tensile Properties of Composites
3.6. Thermal Properties of Composites
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Lin, N.; Dufresne, A. Nanocellulose in biomedicine: Current status and future prospect. Eur. Polym. J. 2014, 59, 302–325. [Google Scholar] [CrossRef] [Green Version]
- Eichhorn, S.J.; Dufresne, A.; Aranguren, M.; Marcovich, N.E.; Capadona, J.R.; Rowan, S.J.; Weder, C.; Thielemans, W.; Roman, M.; Renneckar, S.; et al. Review: Current international research into cellulose nanofibers and nanocomposites. J. Mater. Sci. 2010, 45, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Iwamoto, S.; Kai, W.; Isogai, A.; Iwata, T. Elastic Modulus of Single Cellulose Microfibrils from Tunicate Measured by Atomic Force Microscopy. Biomacromolecules 2009, 10, 2571–2576. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Shi, K.; Zhitomirsky, I.; Cranston, E.D. Cellulose Nanocrystal Aerogels as Universal 3D Lightweight Substrates for Supercapacitor Materials. Adv. Mater. 2015, 27, 6104–6109. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; He, Z.; Mosseler, J.A.; Ni, Y. Production of highly electro-conductive cellulosic paper via surface coating of carbon nanotube/graphene oxide nanocomposites using nanocrystalline cellulose as a binder. Cellulose 2014, 21, 4569–4581. [Google Scholar] [CrossRef]
- Mueller, S.; Sapkota, J.; Nicharat, A.; Zimmermann, T.; Tingaut, P.; Weder, C.; Foster, E.J. Influence of the nanofiber dimensions on the properties of nanocellulose/poly (vinyl alcohol) aerogels. J. Appl. Polym. Sci. 2014, 132, 41740. [Google Scholar] [CrossRef]
- Lyubimova, O.; Stoyanov, S.R.; Gusarov, S.; Kovalenko, A. Electric Interfacial Layer of Modified Cellulose Nanocrystals in Aqueous Electrolyte Solution: Predictions by the Molecular Theory of Solvation. Langmuir 2015, 31, 7106–7116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moon, R.J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J.P. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem. Soc. Rev. 2011, 40, 3941–3994. [Google Scholar] [CrossRef] [PubMed]
- Lamaming, J.; Hashim, R.; Leh, C.P.; Sulaiman, O.; Sugimoto, T.; Nasir, M. Isolation and characterization of cellulose nanocrystals from parenchyma and vascular bundle of oil palmtrunk (Elaeisguineensis). Carbohydr. Polym. 2015, 134, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Nasir, M.; Hashim, R.; Sulaiman, O.; Nordin, N.A.; Lamaming, J.; Asim, M. Laccase, an Emerging Tool to Fabricate Green Composites: A Review. BioResources 2015, 10, 6262–6284. [Google Scholar] [CrossRef] [Green Version]
- Abraham, E.; Deepa, B.; Pothan, L.A.; Jacob, M.; Thomas, S.; Cvelbar, U.; Anandjiwala, R. Extraction of nanocellulose fibrils from lignocellulosicfibers: A novel approach. Carbohydr. Polym. 2011, 86, 1468–1475. [Google Scholar] [CrossRef]
- Abitbol, T.; Rivkin, A.; Cao, Y.; Nevo, Y.; Abraham, E.; Ben-Shalom, T.; Lapidot, S.; Shoseyov, O. Nanocellulose, a tiny fiber with huge applications. Curr. Opin. Biotechnol. 2016, 39, 76–88. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, M.N.K.; Beg, M.D.H.; Khan, M.R.; Mina, M.F. Synthesis of copper nanoparticles and their antimicrobial performances in natural fibers. Mater. Lett. 2013, 98, 26–29. [Google Scholar] [CrossRef] [Green Version]
- Kaxutoshi, Y.; Takeshi, K.; Toshiro, F.; Iso, A.A. Novel Modification of Klason Lignin Quantitaitve Method. Jpn. Tappi J. 1984, 38, 466–475. [Google Scholar]
- Park, C.-W.; Han, S.-Y.; Choi, S.-K.; Lee, S.-H. Preparation and Properties of Holocellulose Nanofibrils with Different Hemicellulose Content. BioResources 2017, 12, 6298–6308. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Sain, M. Dispersion of soybean stock-based nanofiber in a plastic matrix. Polym. Int. 2007, 56, 538–546. [Google Scholar] [CrossRef]
- Marchessault, R.H. Application of infra-red spectroscopy to cellulose and wood polysaccharides. Pure Appl. Chem. 1962, 5, 107–130. [Google Scholar] [CrossRef]
- Luz, S.M.; Del, T.J.; Rocha, G.J.M.; Goncalves, A.R.; Del’Arco, A.P.J. Cellulose and lignin from sugarcane bagasse reinforced polypropylene composites: Effect of acetylation on mechanical and thermal properties. Compos. Part A Appl. Sci. Manuf. 2008, 39, 1362–1369. [Google Scholar] [CrossRef]
Name of Chemical Constituents of BNHF | Amount Present in Percentages (%) |
---|---|
Aqueous Extract | 0.56% |
Fatty and waxy maters | 1.38% |
Pectic maters | 0.92% |
Lignin | 14.87% |
α-cellulose | 51.08% |
Hemicellulose | 14.87% |
Ash | 7.69% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sultana, T.; Sultana, S.; Nur, H.P.; Khan, M.W. Studies on Mechanical, Thermal and Morphological Properties of Betel Nut Husk Nano Cellulose Reinforced Biodegradable Polymer Composites. J. Compos. Sci. 2020, 4, 83. https://doi.org/10.3390/jcs4030083
Sultana T, Sultana S, Nur HP, Khan MW. Studies on Mechanical, Thermal and Morphological Properties of Betel Nut Husk Nano Cellulose Reinforced Biodegradable Polymer Composites. Journal of Composites Science. 2020; 4(3):83. https://doi.org/10.3390/jcs4030083
Chicago/Turabian StyleSultana, Tanvir, Shahin Sultana, Husna Parvin Nur, and Md Wahab Khan. 2020. "Studies on Mechanical, Thermal and Morphological Properties of Betel Nut Husk Nano Cellulose Reinforced Biodegradable Polymer Composites" Journal of Composites Science 4, no. 3: 83. https://doi.org/10.3390/jcs4030083
APA StyleSultana, T., Sultana, S., Nur, H. P., & Khan, M. W. (2020). Studies on Mechanical, Thermal and Morphological Properties of Betel Nut Husk Nano Cellulose Reinforced Biodegradable Polymer Composites. Journal of Composites Science, 4(3), 83. https://doi.org/10.3390/jcs4030083