Synthesis of Supported Metal Nanoparticles (Au/TiO2) by the Suspension Impregnation Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Equipment
2.2. Synthesis of TiO2
2.3. Au/TiO2 Synthesis by Impregnation
2.4. Au/TiO2 Synthesis by Suspension
2.5. N2 Adsorption (Specific Surface Area, Pore Diameter and Total Pore Volume)
2.6. X-Ray Diffraction (XDR)
2.7. Gold Concentration (ICP-OES)
2.8. Thermogravimetric Analysis (TGA) and Differential Thermal Analysis (DTA)
2.9. Transmission Electron Microscopy (TEM)
2.10. HAADF-STEM
2.11. CO2 Adsorption
3. Results and Discussion
3.1. Sample Characterization
3.2. CO2 Adsorption
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Valden, M.; Pak, S.; Lai, X.; Goodman, D.W. Structure sensitivity of CO oxidation over model Au/TiO2 catalysts. Catal. Lett. 1998, 56, 7–10. [Google Scholar] [CrossRef]
- van Bokhoven, J.A.; Louis, C.; Miller, J.T.; Tromp, M.; Safonova, O.V.; Glatzel, P. Activation of Oxygen on Gold/Alumina Catalysts: In Situ High-Energy-Resolution Fluorescence and Time-Resolved X-ray Spectroscopy. Angew. Chem. 2006, 118, 4767–4770. [Google Scholar] [CrossRef]
- Mavrikakis, M.; Stoltze, P.; Nørskov, J.K. Making gold less noble. Catal. Lett. 2000, 64, 101–106. [Google Scholar] [CrossRef]
- Janssens, T.V.W.; Clausen, B.S.; Hvolbæk, B.; Falsig, H.; Christensen, C.H.; Bligaard, T.; Nørskov, J.K. Insights into the reactivity of supported Au nanoparticles: Combining theory and experiments. Top. Catal. 2007, 44, 15–26. [Google Scholar] [CrossRef]
- Abutalib, M.M.; Rajeh, A. Influence of ZnO/Ag nanoparticles doping on the structural, thermal, optical and electrical properties of PAM/PEO composite. Phys. B Condens. Matter 2020, 578, 411796. [Google Scholar] [CrossRef]
- Chen, S.; Chang, A.; Rungsi, A.N.; Attanatho, L.; Chang, C.; Pan, J.; Suemanotham, A.; Mochizuki, T.; Takagi, H.; Yang, C.; et al. Superficial Pd nanoparticles supported on carbonaceous SBA-15 as efficient hydrotreating catalyst for upgrading biodiesel fuel. Appl. Catal. A Gen. 2020, 117707. [Google Scholar] [CrossRef]
- Li, J.; Yuan, R.; Chai, Y.; Che, X. Fabrication of a novel glucose biosensor based on Pt nanoparticles- decorated iron oxide-multiwall carbon nanotubes magnetic composite. J. Mol. Catal. B Enzym. 2010, 66, 8–14. [Google Scholar] [CrossRef]
- Li, Y.; Sundermann, A.; Gerlach, O.; Low, K.B.; Zhang, C.C.; Zheng, X.; Zhu, H.; Axnanda, S. Catalytic decomposition of N2O on supported Rh catalysts. Catal. Today 2019. [Google Scholar] [CrossRef]
- Srimara, P.; Chevapruk, T.; Kumnorkaew, P.; Muangnapoh, T.; Vas-Umnuay, P. Synthesis of Ni Nanoparticles for Solar Selective Absorber by Chemical Reduction Method. Mater. Today Proc. 2020, 23, 720–725. [Google Scholar] [CrossRef]
- Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature far Below 0 °C. Chem. Lett. 1987, 16, 405–408. [Google Scholar] [CrossRef]
- Valden, M.; Lai, X.; Goodman, D.W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 1998, 281, 1647–1650. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, T.; Misu, Y.; Yamamoto, M.; Tanabe, T.; Kumagai, J.; Ogawa, S.; Yagi, S. Effects of the amount of Au nanoparticles on the visible light response of TiO2 photocatalysts. Catal. Today 2020, 352, 34–38. [Google Scholar] [CrossRef]
- Portillo-Vélez, N.S.; Zanella, R. Comparative study of transition metal (Mn, Fe or Co) catalysts supported on titania: Effect of Au nanoparticles addition towards CO oxidation and soot combustion reactions. Chem. Eng. J. 2020, 385, 123848. [Google Scholar] [CrossRef]
- Khdary, N.H.; Ghanem, M.A.; Merajuddine, M.G.; Bin Manie, F.M. Incorporation of Cu, Fe, Ag, and Au nanoparticles in mercapto-silica (MOS) and their CO2 adsorption capacities. J. CO2 Util. 2014, 5, 17–23. [Google Scholar] [CrossRef]
- Du, L.; Furube, A.; Yamamoto, K.; Hara, K.; Katoh, R.; Tachiya, M. Plasmon-induced charge separation and recombination dynamics in gold-TiO2 nanoparticle systems: Dependence on TiO2 particle size. J. Phys. Chem. C 2009, 113, 6454–6462. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Y.; Jiang, J.; Liu, R.; Li, M.; Wang, Y.; Su, Y.; Zhu, B.; Zhang, S.; Huang, W.; et al. A DRIFTS study of low-temperature CO oxidation over Au/SnO2 catalyst prepared by co-precipitation method. Catal. Commun. 2009, 10, 640–644. [Google Scholar] [CrossRef]
- Haruta, M.; Tsubota, S.; Kobayashi, T.; Kageyama, H.; Genet, M.J.; Delmon, B. Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O. J. Catal. 1993, 144, 175–192. [Google Scholar] [CrossRef]
- Okumura, M.; Tanaka, K.; Ueda, A.; Haruta, M. The reactivities of dimethylgold(III)β-diketone on the surface of TiO2 A novel preparation method for Au catalysts. Solid State Ion. 1997, 95, 143–149. [Google Scholar] [CrossRef]
- Li, J.; Zeng, H.C. Preparation of Monodisperse Au/TiO2 Nanocatalysts via Self-Assembly. Chem. Mater. 2006, 18, 4270–4277. [Google Scholar] [CrossRef]
- Deki, S.; Aoi, Y.; Yanagimoto, H.; Ishii, K.; Akamatsu, K.; Mizuhata, M.; Kajinami, A. Preparation and characterization of Au-dispersed TiO2 thin films by a liquid-phase deposition method. J. Mater. Chem. 1996, 6, 1879–1882. [Google Scholar] [CrossRef]
- Yang, Y.F.; Sangeetha, P.; Chen, Y.W. Au/TiO2 catalysts prepared by photo-deposition method for selective CO oxidation in H2 stream. Int. J. Hydrog. Energy 2009, 34, 8912–8920. [Google Scholar] [CrossRef]
- Sonawane, R.S.; Dongare, M.K. Sol-gel synthesis of Au/TiO2 thin films for photocatalytic degradation of phenol in sunlight. J. Mol. Catal. A Chem. 2006, 243, 68–76. [Google Scholar] [CrossRef]
- Kim, M.Y.; Park, J.H.; Shin, C.H.; Han, S.W.; Seo, G. Dispersion improvement of platinum catalysts supported on silica, silica-alumina and alumina by titania incorporation and ph adjustment. Catal. Lett. 2009, 133, 288–297. [Google Scholar] [CrossRef]
- Toebes, M.L.; Van Der Lee, M.K.; Tang, L.M.; In ’T Veld, M.H.H.; Bitter, J.H.; Van Dillen, A.J.; De Jong, K.P. Preparation of carbon nanofiber supported platinum and ruthenium catalysts: Comparison of ion adsorption and homogeneous deposition precipitation. J. Phys. Chem. B 2004, 108, 11611–11619. [Google Scholar] [CrossRef] [Green Version]
- Oh, H.S.; Oh, J.G.; Kim, H. Modification of polyol process for synthesis of highly platinum loaded platinum-carbon catalysts for fuel cells. J. Power Sources 2008, 183, 600–603. [Google Scholar] [CrossRef]
- Zanella, R.; Delannoy, L.; Louis, C. Mechanism of deposition of gold precursors onto TiO2 during the preparation by cation adsorption and deposition-precipitation with NaOH and urea. Appl. Catal. A Gen. 2005, 291, 62–72. [Google Scholar] [CrossRef]
- Phonthammachai, N.; White, T.J. One-step synthesis of highly dispersed gold nanocrystals on silica spheres. Langmuir 2007, 23, 11421–11424. [Google Scholar] [CrossRef]
- Tsoncheva, T.; Gallo, A.; Scotti, N.; Dimitrov, M.; Delaigle, R.; Gaigneaux, E.M.; Kovacheva, D.; Dal Santo, V.; Ravasio, N. Optimization of the preparation procedure of cobalt modified silicas as catalysts in methanol decomposition. Appl. Catal. A Gen. 2012, 417–418, 209–219. [Google Scholar] [CrossRef]
- Ivanova, S.; Pitchon, V.; Petit, C.; Herschbach, H.; Van Dorsselaer, A.; Leize, E. Preparation of alumina supported gold catalysts: Gold complexes genesis, identification and speciation by mass spectrometry. Appl. Catal. A Gen. 2006, 298, 203–210. [Google Scholar] [CrossRef]
- Baatz, C.; Thielecke, N.; Prüße, U. Influence of the preparation conditions on the properties of gold catalysts for the oxidation of glucose. Appl. Catal. B Environ. 2007, 70, 653–660. [Google Scholar] [CrossRef]
- Schaal, M.T.; Rebelli, J.; McKerrow, H.M.; Williams, C.T.; Monnier, J.R. Effect of liquid phase reducing agents on the dispersion of supported Pt catalysts. Appl. Catal. A Gen. 2010, 382, 49–57. [Google Scholar] [CrossRef]
- Saunders, A.E.; Sigman, M.B.; Korgel, B.A. Growth kinetics and metastability of monodisperse TOAB capped Au. JPCB 2004, 108, 193–199. [Google Scholar] [CrossRef]
- Miller, J.T.; Schreier, M.; Kropf, A.J.; Regalbuto, J.R. A fundamental study of platinum tetraammine impregnation of silica: The effect of method of preparation, loading, and calcination temperature on (reduced) particle size. J. Catal. 2004, 225, 203–212. [Google Scholar] [CrossRef]
- Girardon, J.S.; Quinet, E.; Griboval-Constant, A.; Chernavskii, P.A.; Gengembre, L.; Khodakov, A.Y. Cobalt dispersion, reducibility, and surface sites in promoted silica-supported Fischer-Tropsch catalysts. J. Catal. 2007, 248, 143–157. [Google Scholar] [CrossRef]
- Maitra, A.M.; Cant, N.W.; Trimm, D.L. The Preparation of Tungten Based. Appl. Catal. 1986, 27, 9–19. [Google Scholar] [CrossRef]
- Boccuzzi, F.; Chiorino, A.; Martra, G.; Gargano, M.; Ravasio, N.; Carrozzini, B. Preparation, characterization, and activity of Cu/TiO2 catalysts: I. Influence of the preparation method on the dispersion of copper in Cu/TiO. J. Catal. 1997, 165, 129–139. [Google Scholar] [CrossRef]
- Bezerra, D.P.; Silva, F.W.M.D.; Moura, P.A.S.D.; Sousa, A.G.S.; Vieira, R.S.; Rodriguez-Castellon, E.; Azevedo, D.C.S. CO2 adsorption in amine-grafted zeolite 13X. Appl. Surf. Sci. 2014, 314, 314–321. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Du, T.; Li, G.; Yang, F.; Che, S. Using one waste to tackle another: Preparation of a CO2 capture material zeolite X from laterite residue and bauxite. J. Hazard. Mater. 2014, 278, 551–558. [Google Scholar] [CrossRef] [Green Version]
- Ojeda-López, R.; Aguilar-Huerta, E.; Maia, D.; Azevedo, D.; Felipe, C.; Domíngez-Ortiz, A. Tailoring synthesis conditions of carbon microfibers to enhance the microporosity, CO2 and CH4 adsorption by using the response surface methodology. Microporous Mesoporous Mater. 2020, 305, 110333–110341. [Google Scholar] [CrossRef]
- Ojeda-López, R.; Esparza-Schulz, J.M.; Pérez-Hermosillo, I.J.; Hernández-Gordillo, A.; Domínguez-Ortiz, A. Improve in CO2 and CH4 Adsorption Capacity on Carbon Microfibers Synthesized by Electrospinning of PAN. Fibers 2019, 7, 81. [Google Scholar] [CrossRef] [Green Version]
- Ojeda-López, R.; Pérez-Hermosillo, I.J.; Marcos Esparza-Schulz, J.; Cervantes-Uribe, A.; Domínguez-Ortiz, A. SBA-15 materials: Calcination temperature influence on textural properties and total silanol ratio. Adsorption 2015, 21, 659–669. [Google Scholar] [CrossRef]
- Gmachowski, L. Gmachowski1996.Pdf. J. Chem. Eng. Jpn. 1996, 29, 897–900. [Google Scholar] [CrossRef] [Green Version]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Musić, S.; Gotić, M.; Ivanda, M.; Popović, S.; Turković, A.; Trojko, R.; Sekulić, A.; Furić, K. Chemical and microstructural properties of TiO2 synthesized by sol-gel procedure. Mater. Sci. Eng. B 1997, 47, 33–40. [Google Scholar] [CrossRef]
- Hanaor, D.A.H.; Chironi, I.; Karatchevtseva, I.; Triani, G.; Sorrell, C.C. Single and mixed phase TiO2 powders prepared by excess hydrolysis of titanium alkoxide. Adv. Appl. Ceram. 2012, 111, 149–158. [Google Scholar] [CrossRef] [Green Version]
- Silahua-Pavón, A.A.; Torres-Torres, G.; Arévalo-Pérez, J.C.; Cervantes-Uribe, A.; Guerra-Que, Z.; Cordero-García, A.; Espinosa de Los Monteros, A.; Beltramini, J.N. Effect of gold addition by the recharge method on silver supported catalysts in the catalytic wet air oxidation (CWAO) of phenol. RSC Adv. 2019, 9, 11123–11134. [Google Scholar] [CrossRef] [Green Version]
- Padikkaparambil, S.; Narayanan, B.; Yaakob, Z.; Viswanathan, S.; Tasirin, S.M. Au/TiO2 reusable photocatalysts for dye degradation. Int. J. Photoenergy 2013, 2013. [Google Scholar] [CrossRef] [Green Version]
- Jane Huang, P.; Chang, H.; Tih Yeh, C.; Wen Tsai, C. Transformation of TiO2 monitored by Thermo-Raman spectroscopy with TGA/DTA. Thermochimca Acta 1997, 297, 85–92. [Google Scholar] [CrossRef]
- Lee, I.; Joo, J.B.; Yin, Y.; Zaera, F. A yolk@shell nanoarchitecture for Au/TiO2 catalysts. Angew. Chem. Int. Ed. 2011, 50, 10208–10211. [Google Scholar] [CrossRef]
- Souza, K.R.; de Lima, A.F.F.; de Sousa, F.F.; Appel, L.G. Preparing Au/ZnO by precipitation-deposition technique. Appl. Catal. A Gen. 2008, 340, 133–139. [Google Scholar] [CrossRef]
- Moreau, F.; Bond, G.C.; Taylor, A.O. Gold on titania catalysts for the oxidation of carbon monoxide: Control of pH during preparation with various gold contents. J. Catal. 2005, 231, 105–114. [Google Scholar] [CrossRef]
- Yang, J.H.; Henao, J.D.; Costello, C.; Kung, M.C.; Kung, H.H.; Miller, J.T.; Kropf, A.J.; Kim, J.G.; Regalbuto, J.R.; Bore, M.T.; et al. Understanding preparation variables in the synthesis of Au/Al2O3 using EXAFS and electron microscopy. Appl. Catal. A Gen. 2005, 291, 73–84. [Google Scholar] [CrossRef]
- Aboukaïs, A.; Aouad, S.; El-Ayadi, H.; Skaf, M.; Labaki, M.; Cousin, R.; Abi-Aad, E. Catalytic oxidation of propylene, toluene, carbon monoxide, and carbon black over Au/CeO2 solids: Comparing the impregnation and the deposition-precipitation methods. Sci. World J. 2013, 2013. [Google Scholar] [CrossRef] [PubMed]
- Leal, G.B.; Ciotti, L.; Watacabe, B.N.; Loureiro da Silva, D.C.; Antoniassi, R.M.; Silva, J.C.M.; Linardi, M.; Giudici, R.; Vaz, J.M.; Spinacé, E.V. Preparation of Au/TiO2 by a facile method at room temperature for the CO preferential oxidation reaction. Catal. Commun. 2018, 116, 38–42. [Google Scholar] [CrossRef]
Sample | SBET(m2/g) | VT (cm3/g) | DNLDFT (nm) | Au (wt%) a | Au Diameter (nm) b | D (%) c |
---|---|---|---|---|---|---|
TiO2 | 47 | 0.169 | 13.9 | - | - | - |
IAuTi | 58 | 0.185 | 11.3 | 0.98 | 3.96 | 30 |
IAuTiA | 56 | 0.178 | 12.1 | 0.97 | 4.34 | 28 |
IAuTiB | 52 | 0.175 | 12.1 | 0.98 | 9.35 | 13 |
SAuTi | 54 | 0.191 | 14 | 0.91 | 3.07 | 42 |
SAuTiA | 53 | 0.181 | 12.1 | 0.92 | 2.69 | 47 |
SAuTiB | 53 | 0.154 | 11.3 | 0.91 | 3.67 | 35 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Martínez, C.; García-Domínguez, Á.E.; Guerrero-Robles, F.; Saavedra-Díaz, R.O.; Torres-Torres, G.; Felipe, C.; Ojeda-López, R.; Silahua-Pavón, A.; Cervantes-Uribe, A. Synthesis of Supported Metal Nanoparticles (Au/TiO2) by the Suspension Impregnation Method. J. Compos. Sci. 2020, 4, 89. https://doi.org/10.3390/jcs4030089
Rodríguez-Martínez C, García-Domínguez ÁE, Guerrero-Robles F, Saavedra-Díaz RO, Torres-Torres G, Felipe C, Ojeda-López R, Silahua-Pavón A, Cervantes-Uribe A. Synthesis of Supported Metal Nanoparticles (Au/TiO2) by the Suspension Impregnation Method. Journal of Composites Science. 2020; 4(3):89. https://doi.org/10.3390/jcs4030089
Chicago/Turabian StyleRodríguez-Martínez, Carolina, Ángel Emilio García-Domínguez, Fernando Guerrero-Robles, Rafael Omar Saavedra-Díaz, Gilberto Torres-Torres, Carlos Felipe, Reyna Ojeda-López, Adib Silahua-Pavón, and Adrián Cervantes-Uribe. 2020. "Synthesis of Supported Metal Nanoparticles (Au/TiO2) by the Suspension Impregnation Method" Journal of Composites Science 4, no. 3: 89. https://doi.org/10.3390/jcs4030089
APA StyleRodríguez-Martínez, C., García-Domínguez, Á. E., Guerrero-Robles, F., Saavedra-Díaz, R. O., Torres-Torres, G., Felipe, C., Ojeda-López, R., Silahua-Pavón, A., & Cervantes-Uribe, A. (2020). Synthesis of Supported Metal Nanoparticles (Au/TiO2) by the Suspension Impregnation Method. Journal of Composites Science, 4(3), 89. https://doi.org/10.3390/jcs4030089