Electrodeposition from a Graphene Bath: A Sustainable Copper Composite Alloy in a Graphene Matrix
Abstract
:1. Introduction
2. Experimental
Deposition Conditions
3. Results and Discussion
3.1. Composite Analysis
3.2. XRF Analysis
3.3. Atomic Force Microscopic Features of the Deposit
3.4. XRD Features of Brass
3.5. Raman Imaging
3.6. Thermogravimetric Analysis
3.7. SEM of the Deposit
3.8. Tafel Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jessop, A.; Turner, A. Leaching of Cu and Zn from discarded boat paint particles into tapwater and rainwater. Chemosphere 2011, 83, 1575–1580. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, I.M.; Nayl, A.A.; Daou, J.A. Leaching and recovery of zinc and copper from brass slag by sulfuric acid. J. Saudi Chem. Soc. 2012, 55, S280–S285. [Google Scholar] [CrossRef] [Green Version]
- Estelle, A.A. Drinking water lead regulations: Impact on the brass value chain. Mater. Technol. 2016, 32, 1763–1770. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://www.britannica.com/science/copper#googDisableSync_ (accessed on 2 March 2020).
- Hunt, L.B. The early history of gold plating. Gold Bull. 1973, 6, 6. [Google Scholar] [CrossRef] [Green Version]
- Brenner, A. Electrodeposition of Alloys; Academic Press: New York, NY, USA, 1963; Chapter 14; p. 457. [Google Scholar]
- Juskenas, R.; Karpaviciene, V.; Pakstas, V.; Selskis, A.; Kapocius, V. Electrochemical and XRD studies of Cu–Zn coatings electrodeposited in solution with D-mannitol. J. Electroanal. Chem. 2007, 602, 237. [Google Scholar] [CrossRef]
- de Almeida, M.R.H.; Barbano, E.P.; de Carvalho, M.F.; Carlos, I.A.; Siqueira, J.L.P.; Barbosa, L.L. Electrodeposition of copper–zinc from an alkaline bath based on EDTA. Surf. Coat. Technol. 2011, 206, 95–102. [Google Scholar] [CrossRef] [Green Version]
- Carlos, I.A.; de Almeida, M.R.H. Study of the influence of the polyalcohol sorbitol on the electrodeposition of copper–zinc films from a non-cyanide bath. J. Electroanal. Chem. 2004, 562, 153. [Google Scholar] [CrossRef]
- Amutha, K.; Marikkannu, K.R.; Kannan, A.; Vasudevan, T.; Kalaignan, G.P. Role of Additives on the Electrochemical Behavior of Cu-Zn Alloy Deposit from Acid Tartarte; International Symposium of Research Students on Materials Science and Engineering: Chennai, India, 2004. [Google Scholar]
- Survila, A.; Mockus, Z.; Kanapeckaite, S.; Stalnionis, G. Kinetics of zinc and copper reduction in gluconate–sulfate solutions. Electrochim. Acta 2013, 94, 307–313. [Google Scholar] [CrossRef]
- Fujiwara, Y.; Enomoto, H. Electrodeposition of Cu-Zn alloys from glucoheptonate baths. Surf. Coat. Technol. 1988, 35, 101. [Google Scholar] [CrossRef]
- Ferreira, F.B.; Silva, F.L.; Luna, A.S.; Lago, D.C.; Senna, L.F. Response surface modeling and optimization to study the influence of deposition parameters on the electrodeposition of Cu–Zn alloys in citrate medium. J. Appl. Electrochem. 2007, 37, 473. [Google Scholar] [CrossRef]
- Senna, L.F.; Diaz, S.L.; Sathler, L. Electrodeposition of copper–zinc alloys. J. Appl. Electrochem. 2003, 33, 1155. [Google Scholar] [CrossRef]
- Orekhova, V.V.; Andryushchenko, F.K. Electrodeposition of copper-zinc alloys in Pyrophosphate. Soviet Electrochem. 1978, 14, 240. [Google Scholar]
- Chen, P.Y.; Lin, M.C.; Sun, I.W. Electrodeposition of Cu-Zn alloy from a Lewis acidic ZnCl2-EMIC molten salt. J. Electrochem. Soc. 2000, 147, 3350. [Google Scholar] [CrossRef]
- Allahyarzadeh, M.H.; Roozbehani, B.; Ashrafi, A. Electrodeposition of high Mo content amorphous/nanocrystalline Ni–Mo alloys using 1-ethyl-3-methyl- imidazolium chloride ionic liquid as an additive. Electrochim. Acta 2011, 56, 10210. [Google Scholar] [CrossRef]
- El Abedin, S.E.; Giridhar, P.; Schwab, P.; Endres, F. Electrodeposition of nanocrystalline aluminium from a chloroaluminate ionic liquid. Electrochem. Commun. 2010, 12, 1084. [Google Scholar] [CrossRef]
- Endres, F.; Bukowski, M.; Hempelmann, R.; Natter, H. Electrodeposition of Nanocrystalline. Angew. Chem. Int. Ed. 2003, 42, 3428. [Google Scholar] [CrossRef]
- Mann, O.; Pan, G.B.; Freyland, W. Nanoscale electrodeposition of metals and compound semiconductors from ionic liquids. Electrochim. Acta 2009, 54, 2487. [Google Scholar] [CrossRef]
- Barron, J.C. The Electrochemistry of Zn in Deep Eutectic Solvents; University of Leicester: Leicester, UK, 2009. [Google Scholar]
- De Vreesea, P.; Skoczylas, A.; Matthijs, E.; Fransaer, J.; Binnemans, K. Electrodeposition of copper zinc alloys from an ionic liquid-like choline acetate electrolyte. Electrochim. Acta 2013, 108, 788–794. [Google Scholar] [CrossRef]
- Aldana-González, J.; Olvera-García, J.; Montes de Oca, M.G.; Romero-Romo, M.; Ramírez-Silva, M.T.; Palomar-Pardavé, M. Electrochemical quantification of the electroactive surface area of Au nanoparticles supported onto an ITO electrode by means of Cu UPD. Electrochem. Commun. 2015, 56, 70–74. [Google Scholar] [CrossRef]
- Zhang, J.; Sung, Y.E.; Rikvold, P.A.; Wieckowski, A. Underpotential deposition of Cu on Au (111) in sulfate-containing electrolytes: A theoretical and experimental study. J. Chem. Phys. 1996, 104, 5699–5712. [Google Scholar] [CrossRef] [Green Version]
- Plowman, B.J.; Compton, R.G. Inhibition of Cu underpotential deposition on Au nanoparticles: The role of the citrate capping agent and nanoparticle size. Chem. Electro. Chem. 2014, 1, 1009–1011. [Google Scholar] [CrossRef]
- Turkevich, J.; Stevenson, P.C.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951, 11, 55–75. [Google Scholar] [CrossRef]
- Oviedo, O.A.; Reinaudi, L.; García, S.G.; Leiva, E.P.M. Underpotential Deposition: From Fundamentals and Theory to Applications at the Nanoscale; Scholz, F., Ed.; Monographs in Electrochemistry; Springer: Berlin/Heidelberg, Germany, 2015; Chapter 5. [Google Scholar]
- Milchev, A.; Krastev, I. Two-dimensional progressive and instantaneous nucleation with overlap: The case of multi-step electrochemical reactions. Electrochim. Acta 2011, 56, 2399–2403. [Google Scholar] [CrossRef]
- Palomar-Pardavé, M.; Miranda-Hernández, M.; González, I.; Batina, N. Detailed characterization of potentiostatic current transients with 2D–2D and 2D–3D nucleation transitions. Surf. Sci. 1998, 399, 80–95. [Google Scholar] [CrossRef]
- Scharifker, B.R.; Mostany, J. Three-dimensional nucleation with diffusion controlled growth. Part I: Number density of active sites and nucleation rates per site. J. Electroanal. Chem. 1984, 177, 13–23. [Google Scholar] [CrossRef]
- Mattevi, C.; Kim, H.; Chhowalla, M. A review of chemical vapour deposition of graphene on copper. J. Mater. Chem. 2011, 21, 3324–3334. [Google Scholar] [CrossRef]
- Romero-Romo, M.; Aldana-González, J.; Botello, L.E.; Montes de Oca, M.G.; Ramírez-Silva, M.T.; Corona-Avendaño, S.; Palomar-Pardavé, M. Electrochemical nucleation and growth of Cu onto Au nanoparticles supported on a Si (111) wafer electrode. J. Electroanal. Chem. 2017, 791, 1–7. [Google Scholar] [CrossRef]
- Wong, P.; Santhanam, K.S.V.; Kandlikar, S.G. Cobalt deposition in graphene quantum dot bath: Electrochemical and spectroscopic features: A prospective sensor material. J. Electrochem. Soc. 2018, 165, B232–B239. [Google Scholar] [CrossRef]
- Wong, P.; Santhanam, K.S.V. A new graphene composite with a high coulombic efficiency. J. Power Sources 2016, 332, 337e3. [Google Scholar]
- Protich, Z.; Santhanam, K.S.V.; Jaikumar, A. Electrochemical deposition of copper in quantum dot bath: Pool boiling enhancement. J. Electrochem. Soc. 2016, 163, E166–E172. [Google Scholar] [CrossRef]
- Li, B.; Sullivan, T.D.; Lee, T.C.; Badami, D. Reliability challenges for copper interconnects. Microelectron. Reliab. 2004, 44, 365–380. [Google Scholar] [CrossRef]
- Edelstein, D.; Uzoh, C.; Cabral, C.; DeHaven, P.; Buchwalter, P.; Simon, A.; Cooney, E.; Malhotra, S.; Klaus, D.; Rathore, H.; et al. A high performance liner for copper damascene interconnects. In Proceedings of the IEEE 2001 International Interconnect Technology Conference (Cat. No.01EX461), Burlingame, CA, USA, 6 June 2001. [Google Scholar]
- Ogawa, E.T.; Lee, K.; Blaschke, V.A.; Ho, P.S. Electromigration reliability issues in dual- damascene Cu interconnections. IEEE Trans. Relia. 2002, 51, 403–419. [Google Scholar] [CrossRef]
- Reimbold, G.; Sicardy, O.; Arnaud, L.; Torres, F.F. Mechanical stress migration measurements in damascene copper interconnects and influence on electromigration parameters. IEDM Tech Digest 2002, 745–748. [Google Scholar]
- Liua, S.; Zhanga, X.; Lib, R.; Gaob, L.; Luoa, J. Dendrite-free Li metal anode by lowering deposition interface energy with Cu99Zn alloy coating. Energy Storage Mater. 2018, 14, 43–148. [Google Scholar] [CrossRef]
- Feng, Y.; Li, Z.; Liu, H.; Dong, C.; Wang, J.; Kulinich, S.A.; Du, X. Laser-Prepared CuZn Alloy Catalyst for Selective Electrochemical Reduction of CO2 to Ethylene. Langmuir 2018, 34, 13544–13549. [Google Scholar] [CrossRef]
- Yin, G.; Abe, H.; Kodiyath, R.; Ueda, S.; Srinivasan, N.; Yamaguchi, A.; Miyauchi, M. Selective electro- or photo-reduction of carbon dioxide to formic acid using a Cu–Zn alloy catalyst. J. Mater. Chem. A 2017, 5, 12113–12119. [Google Scholar] [CrossRef]
- Hu, H.J.; Tang, Y.; Hu, Q.; Wan, P.Y.; Dai, L.M.; Yang, X.J. In-situ grown nanoporous Zn-Cu catalysts on brass foils for enhanced electrochemical reduction of carbon dioxide. Appl. Surf. Sci. 2018, 445, 281–286. [Google Scholar] [CrossRef]
- Ballesteros, J.C.; Gómez-Solís, C.; Torres-Martínez, L.M.; Juárez-Ramírez, I. Electrodeposition of Cu-Zn intermetallic compounds for its application as electrocatalyst in the hydrogen evolution reaction. Int. J. Electrochem. Sci. 2015, 10, 2892. [Google Scholar]
- Derkus, B.; Emregul, E.; Emregul, K.C. Copper-zinc alloy nanoparticle based 214 enzyme-free superoxide radical sensing on a screen-printed electrode. Talanta 2015, 134, 206. [Google Scholar] [CrossRef]
- Page, D.; Roy, S. Electrodeposition of Thin Film Cu-Zn Shape Memory Alloys. J. Phys. France. 1997, 7, C5–C269. [Google Scholar] [CrossRef]
- Assaf, F.H.; Rehim, S.S.A.E.; Mohamed, A.S.; Zaky, A.M. Electroplating of brass from citrate-based alloy baths. Indian J. Chem. 1995, 2, 147–152. [Google Scholar]
- Yurdal, K.; Karahan, I.H. A cyclic voltammetry study on Electrodeposition of cu-Zn alloy films: Effect of ultrasonication time. Acta Phys. Pol. A 2017, 132, 1087–1090. [Google Scholar] [CrossRef]
- Yurdal, K.; Karahan, I.H. Phase formation in electrodeposited cu-Zn alloy films produced from ultrasonicated solutions. Acta Phys. Pol. A 2017, 132, 1091–1094. [Google Scholar] [CrossRef]
- De Almeida, M.R.H.; Barbano, E.P.; Zacarin, M.G.; de Brito, M.M.; Tulio, P.C.; Carlos, I.A. Electrodeposition of CuZn films from free-of-cyanide alkaline baths containing EDTA as complexing agent. Surf. Coat. Technol. 2016, 287, 103–112. [Google Scholar] [CrossRef]
- Brenner, A. Electrodeposition of Alloys; Academic Press: New York, NY, USA, 1963; p. 459. [Google Scholar]
- Vagramyan, T.; Leach, J.S.; Moon, J.R. On the problems of electrodepositing brass from non-cyanide electrolytes. Electrochim. Acta 1979, 24, 231–236. [Google Scholar] [CrossRef]
- Ramírez, C.; Calderón, J.A. Study of the effect of Triethanolamine as a chelating agent in the simultaneous electrodeposition of copper and zinc from non-cyanide electrolytes. J. Electroanal. Chem. 2016, 765, 132–139. [Google Scholar] [CrossRef]
- Fujiwara, Y.; Enomoto, H. Characterization of cu-Zn alloy deposits from glucoheptonate baths. Surf. Coat. Technol. 1988, 35, 113. [Google Scholar] [CrossRef]
- Krishnan, R.; Muralidharan, V.; Natarajan, S. A non- cyanide brass plating bath. Bull. Electrochem. 1996, 12, 274–277. [Google Scholar]
- Rossi, A. A tartrate-based alloy bath for brass-plated steel wire production. J. Appl. Electrochem. 1992, 22, 64–72. [Google Scholar]
- Rousse, C.; Beaufils, S.; Fricoteaux, P. Electrodeposition of Cu-Zn thin films from room temperature ionic liquid. Electrochim. Acta 2013, 107, 624–631. [Google Scholar] [CrossRef]
- Santana Barros, K.; Ortega, E.M.; Pérez-Herranz, V.; Espinosa, D.C.R. Electrodeposition of Cu–Zn thin films from room temperature ionic liquid. J. Electroanal. Chem. 2020, 865, 114129. [Google Scholar]
- Vivegnis, S.; Delhalle, J.; Mekhalif, Z.; Renner, F.U. Copper–zinc alloy electrodeposition mediated by triethanolamine as a complexing additive and chemical dealloying. Electrochimica Acta 2019, 319, 400–409. [Google Scholar] [CrossRef]
- Available online: https://en.wikipedia.org/wiki/Brass#:~:text=Brass%20is%20an%20alloy%20of,within%20the%20same%20crystal%20structure (accessed on 6 November 2020).
- Santhanam, K.S.V.; Kandlikar, S.; Valentina, M.; Yang, Y. Electrochemical process for producing graphene, graphene oxide, metal composites and coated substrates. U.S. Patent No. 9840782, 12 December 2017. [Google Scholar]
- Sen, C.P.; Valiyaveettil, S. Soluble graphene nanoribbons from planarization of oligophenylenes. Chem. Eur. J. 2017, 23, 1686–1693. [Google Scholar] [CrossRef] [PubMed]
- Andricacos, P.C.; Uzoh, C.; Dukovic, J.; Horkans, J.; Deligianni, L. Damascene copper electroplating for chip interconnections. IBM J. Res. Dev. 1998, 42, 567. [Google Scholar] [CrossRef]
- Vereecken, P.M.; Binstead, R.A.; Deligianni, H.; Andricacos, P.C. The chemistry of additives in damascene copper plating. IBM J. Res. Dev. 2005, 49, 3. [Google Scholar] [CrossRef]
- Long, J.G.; Searson, P.C.; Vereecken, P.M. Electrochemical characterization of adsorption-desorption of the cuprous-suppressor-chloride complex during electrodeposition of copper. J. Electrochem. Soc. 2006, 153, C258. [Google Scholar] [CrossRef]
- Moffat, T.P.; Bonevich, J.E.; Huber, W.H.; Stanishevsky, A.; Kelly, D.R.; Stafford, G.R.; Josell, D. Superconformal Electrodeposition of Copper in 500–90 nm Features. J. Electrochem. Soc. 2000, 147, 4524. [Google Scholar] [CrossRef]
- Josell, D.; Wheeler, D.; Huber, W.H.; Moffat, T.P. Superconformal electrodeposition in submicron features. Phys. Rev. 2001, 87, 016102. [Google Scholar] [CrossRef] [Green Version]
- Moffat, T.P.; Wheeler, D.; Huber, W.H.; Josell, D. Superconformal Electrodeposition of Copper. Electrochem. Solid State Lett. 2001, 4, C26. [Google Scholar] [CrossRef]
- Josell, D.; Wheeler, D.; Huber, W.H.; Bonevich, J.E.; Moffat, T.P. A simple equation for predicting superconformal electrodeposition in submicrometer trenches. J. Electrochem. Soc. 2001, 148, C767. [Google Scholar] [CrossRef]
- Wheeler, D.; Josell, D.; Moffat, T.P. Modeling superconformal electrodeposition using the level set method. J. Electrochem. Soc. 2003, 150, C302. [Google Scholar] [CrossRef] [Green Version]
- Moffat, T.P.; Ou Yang, L.Y. Accelerator surface phase associated with superconformal Cu electrodeposition. J. Electrochem. Soc. 2010, 157, D228. [Google Scholar] [CrossRef]
- Bard, A.J.; Faulkner, L.R. Electrochemical Methods; Wiley: Hoboken, NJ, USA, 2000. [Google Scholar]
- Nicholson, R.S.; Shain, I. Theory of stationary electrode polarography. single scan and cyclic methods applied to reversible, irreversible, and kinetic systems. Anal. Chem. 1964, 36, 706–723. [Google Scholar] [CrossRef]
- Redjechta, A.; Loucif, K.; Mentar, L.; Khelladi, M.R.; Beniaiche, A. Electrodeposition and characterization of cu-zn alloy films obtained from a sulfate bath. Mater. Technol. 2014, 48, 221–226. [Google Scholar]
- Yavuz, A.; Hacıibrahimoğlu, M.Y.; Bedir, M. Passivation of Cu–Zn alloy on low carbon steel electrodeposited from a pyrophosphate medium. Mater. Res. Express. 2018, 5, 016401. [Google Scholar] [CrossRef]
- Bewick, A.; Fleischman, M.; Thirsk, H.R. Kinetics of the electrocrystallization of thin films of calomel. Trans. Farady Soc. 1962, 58, 2200. [Google Scholar] [CrossRef]
- Palomar-Pardave, M.; Scharifker, B.R.; Arce, E.M.; Romero-Romo, M. Nucleation and diffusion-controlled growth of electroactive centers:Reduction of protons during cobalt electrodeposition. Electrochim. Acta 2005, 50, 4736–4745. [Google Scholar] [CrossRef]
- Rodríguez-Clemente, E.; Le Manh, T.; Guinto-Pano, C.E.; Romero-Romo, M.; Mejía-Caballero, I.; Morales-Gil, P.; Palacios-Gonzalez, E.; Ramírez-Silva, M.T.; Palomar-Pardave, M. Aluminum electrochemical nucleation and growth onto a glassy carbon electrode from a deep eutectic solvent. J. Electrochemical Soc. 2019, 166, D3035–D3041. [Google Scholar]
- Hinatsu, J.T.; Foulkes, F.R. Diffusion coefficients for copper (II) in aqueous cupric sulfate-sulfuric acid solutions. J. Electrochem. Soc. 1989, 136, 125. [Google Scholar] [CrossRef]
- Adamska, L.; Lin, Y.; Ross, A.J.; Batzill, M.; Oleynik, I.I. Atomic and electronic structure of simple metal/graphene and complex metal/graphene/metal interfaces. Phys. Rev. B 2012, 85, 195443. [Google Scholar] [CrossRef] [Green Version]
- Liua, L.; Chia, R. Effect of microstructure on high cycle fatigue behavior of brass processed by laser shock peening. Mater. Sci. Eng. A 2019, 740–741, 342–352. [Google Scholar] [CrossRef]
- Ahmad, S.; Bashir, S.; AliUmm-i-Kalsoom, N.D. Yousaf, A. Faizan-ul-Haq, Naeem, A.; Ahmad, R.; Khlaeeq-ur-Rahman, M. Effect of ion irradiation on the surface, structural and mechanical properties of brass. Nucl. Instrum. Methods Phys. Res. B 2014, 325, 5–10. [Google Scholar] [CrossRef]
- Rotty, C.; Mandroyan, C.; Doche, A.; Hihn, J.Y. Electropolishing of CuZn brasses and 316L stainless steels: Influence of alloy composition or preparation process (ALM vs. standard method). Surf. Coat. Technol. 2016, 307, 125–135. [Google Scholar] [CrossRef]
- Domínguez-Ríos, C.; Moreno, M.V.; Torres-Sánchez, R.; Antúnez, W.; Aguilar- Elguézabal, A.; González-Hernández, J. Effect of tartrate salt concentration on the morphological characteristics and composition of Cu-Zn electroless plating on zamak 5 zinc alloy. Surf. Coat. Technol. 2008, 202, 4848–4854. [Google Scholar] [CrossRef]
- Kassaee, M.Z.; Motamedi, E.; Majdi, M.; Cheshmehkani, A.; Soleimani-Amiri, S.; Buazar, F. Media effects on nanobrass arc fabrications. J. Alloy. Compd. 2008, 453, 229–232. [Google Scholar] [CrossRef]
- Atay, A.H.; Uslu, G.; Kahmaz, Y.; Atay, O. Investigations of microstructure and mechanical properties. In Produced by Sand Casting Method at Different Casting Temperatures. Development of Materials Science in Research and Education (DMSRE29); Behulova, M., Kozisek, Z., Potucek, Z., Eds.; IOP conference series-Materials Science and Engineering: Bristol, UK, 2020; p. 726, UNSP 012018. [Google Scholar] [CrossRef]
- Oulmas, C.; Mameri, S.; Boughrara, D.; Kadri, A.; Delhalle, J.; Mekhalif, Z.; Benfedd, B. Comparative study of Cu–Zn coatings electrodeposited from sulphate and chloride baths. Heliyon 2019, 5, 2058. [Google Scholar] [CrossRef] [Green Version]
- Voncken, J.H.L.; Verkroost, T.W. Powder diffraction of cubic alpha brass. Powder Diffr. 1997, 12, 228. [Google Scholar] [CrossRef]
- Arthisree, D.; Joshi, G.M. Study of polymer graphene quantum dot nanocomposites. J. Mater. Sci. Mater. Electron. 2017, 28, 10516–10524. [Google Scholar] [CrossRef]
- Muniz-Miranda, M.; Gellini, C.; Giorgetti, E. Surface-enhanced raman scattering from copper nanoparticles obtained by laser ablation. J. Phys. Chem. C 2011, 115, 5021–5027. [Google Scholar] [CrossRef]
- Grafa, D.; Molitora, F.; Ensslina, K.; Stampferb, C.; Jungenb, A.; Hieroldb, C.; Wirtz, L. Raman imaging of graphene. Solid State Commun. 2007, 143, 44–46. [Google Scholar] [CrossRef]
- Zhoua, L.; Fox, L.; Włodek, M.; Islas, L.; Slastanova, A.; Robles, E.; Bikondo, O.; Harniman, R.; Fox, N.; Cattelan, M.; et al. Surface structure of few layer graphene. Carbon 2018, 136, 255–261. [Google Scholar] [CrossRef]
- Papageorgiou, D.G.; Kinloch, I.A.; Young, R.J. Mechanical properties of graphene and graphene-based nanocomposites. Prog. Mater. Sci. 2017, 90, 75–127. [Google Scholar] [CrossRef]
- Quiles-Díaza, S.; Enrique-Jimenezb, P.; Papageorgiouc, D.G.; Aniab, F.; Floresb, A.; Kinlochc, I.A.; Gómez-Fatoua, M.A.; Youngc, R.J.; Salavagione, H.J. Influence of the chemical functionalization of graphene on the properties of polypropylene-based nanocomposites. Compos. Part A 2017, 100, 31–39. [Google Scholar] [CrossRef]
- Haciibrahimoğlu, M.Y.; Yavuz, A.; Oztaş, M.; Bedir, M. Electrochemical and structural study of zinc-rich brass deposited from pyrophosphate electrolyte onto the carbon steel. Dig. J. Nanomater. Biostructures 2016, 11, 251–262. [Google Scholar]
- Galai, M.; Benqlilou, H.; Touhami, M.; Belhaj, T.; Berrami, K.; El Kafssaoui, H. Comparative analysis for the corrosion susceptibility of copper alloys in sandy soil. Environ. Eng. Res. 2018, 23, 164–174. [Google Scholar] [CrossRef] [Green Version]
- Carreon-Alvarez, A.; Valderrama, R.C.; Martínez, J.A. Corrosion of aluminum, copper, brass and stainless steel 304 in tequila. Int. J. Electrochem. Sci. 2012, 7, 7877–7887. [Google Scholar]
- Kılınççeker, G.; Erbil, M. The effect of phosphate ions on the electrochemical of brass in sulphate solutions. Mater. Chem. Phys. 2010, 119, 30–39. [Google Scholar] [CrossRef]
- Rosatto, S.S.; Cabot, P.L.; Sumadjo, P.T.A.; Benedetti, A.V. Electrochemical studies of copper–aluminum–silver alloys in 0.5 M H2SO4 Electrochim. Acta 2001, 46, 1043. [Google Scholar]
- Keles, H.; Akca, S. The effect of Variamine Blue B on brass corrosion in NaCl Solution. Arab. J. Chem. 2019, 12, 236–248. [Google Scholar] [CrossRef] [Green Version]
- Jennane, J.; Touhami, M.; Zehra, S.; Baymou, Y.; Kim, S.; Chung, I.; Lgaz, H. Influence of sodium gluconate and cetyl trimethylammoniumbromide on the corrosion behavior of duplex(α-β) brass in sulfuric acid solution. Mater. Chem. Phys. 2019, 227, 200–210. [Google Scholar] [CrossRef]
- Bopp, C.; Santhanam, K.S.V. Corrosion of monel alloy coated with graphene quantum dots. Chem Eng. 2019, 3, 80–83. [Google Scholar]
Ccu2+ (mM) | Czn2+ (mM) | CGQD | I (uA) | Sweep Rate (mV/s) |
---|---|---|---|---|
1.31 | 0 | 0 | 11.2 | 20 |
1.31 | 0.65 | 0 | 10.8 | 20 |
1.31 | 1.30 | 0 | 9.1 | 20 |
2.56 | 1.28 | 0 | 13.7 | 20 |
1.25 | 5.00 | 1 mL | 25.6 | 20 |
2.73 | 1.36 | 1 mL | 38.4 | 20 |
1.28 | 2.56 | 0 | 13.7 | 20 |
0.69 | 1.38 | 1 mL | 7.22 | 20 |
1.31 | 0 | 0 | 11.2 | 20 |
Conc. CuSO4 mM | Conc. ZnSO4 mM | Sweep Rate (V/S) | ipc (uA) | ipa (uA) | ipa/ipc |
---|---|---|---|---|---|
1.10 | 0 | 0.02 | 15.8 | 60.6 | 3.83 |
0.05 | 19.0 | 81.2 | 4.27 | ||
0.10 | 23.8 | 98.0 | 4.12 | ||
0.20 | 29.7 | 105.0 | 3.53 | ||
0.50 | 42.0 | 142 | 3.38 | ||
1.09 | 1.10 | 0.02 | 26.9 * | 23.9 * | 0.88 |
0.05 | 37.7 * | 37.5 * | 0.99 | ||
0.97 | 2.88 | 0.02 | 63.0 * | 44.2 * | 0.70 |
0.05 | 89.2 * | 67.0 * | 0.75 |
Concentration CuSO4 (mM) | imax (A) | tmax (s) | i2tmax A2s | Effective ZnSO4 Concentration | Ratio: (Zn2+)/(Cu2+) |
---|---|---|---|---|---|
0 | 1.90 × 10−4 | 0.075 | 0.27 × 10−8 | 1.31 mM | |
0.65 | 2.9 × 10−4 | 0.125 | 1.02 × 10−8 | 1.31 mM | 2 |
1.29 | 5.54 × 10−4 | 0.075 | 2.30 × 10−8 | 1.30 mM | 1 |
1.93 | 6.95 × 10−4 | 0.050 | 2.41 × 10−8 | 1.30 mM | 0.67 |
2.56 | 1.49 × 10−3 | 0.050 | 1.1 × 10−7 | 1.30 mM | 0.50 |
Sample | C wt % | Cu wt % | Zn wt % | Substrate | Potential | Charge (C) |
---|---|---|---|---|---|---|
1 | 34.01 (64.82) | 65.61 (0.11) | 0.37 (0.002) | C | −1.20 V | 34.80 |
2 | 86.64 (54.14) | 13.30 (0.02) | 0.05 (0.00) | Cu | −0.60 V | 19.50 |
3 | 97.08 (97.72) | 2.88 (0.01) | 0.03 (0.00) | C | −0.60 V | 8.91 |
4 | 91.03 (80.18) | 8.93 (0.02) | 0.04 (0.00) | C | −1.20 V | |
5 | 86.76 (53.06) | 13.00 (0.02) | 0.20 (0.00) | Cu | −1.20 V | 19.00 |
Films | Potential | Medium | wt % Cu | wt % Zn | wt % C | Reference |
---|---|---|---|---|---|---|
Cu | −1.1 V vs Ag/AgCl | 0.7 M K4P2O7 + 70 mM KH2PO4 + 50 mM CuSO4 | 100 | 0 | 0 | 75 |
Cu-Zn | −1.1 V vs Ag/AgCl | 0.7 M K4P2O7 + 70 mM KH2PO4 + 50 mM CuSO4 + 50 mM ZnSO4 | 100 | 0 | 0 | 75 |
Cu-Zn | −1.4 V vs Ag/AgCl | 0.7 M K4P2O7 + 70 mM KH2PO4 + 50 mM CuSO4 + 50 mM ZnSO4 | 90 | 10 | 0 | 75 |
Cu-Zn | −0.60 V | 0.1 M K2SO4 + 1 mL GQD | 13.31 | 0.05 | 86.64 | Present work |
Cu-Zn | −1.20 V | 0.1 M K2SO4 + 1 mL GQD | 13.00 | 0.20 | 86.76 | Present work |
Cu-Zn | −1.10 V | 3 M NaOH + 0.25 M EDTA | 6.35 | 0.04 | 0 | 76 |
Cu-Zn | −1.50 V | 0.1 CuSO4, 0.1 ZnO, 0.2 D-mannitol, 3 KOH | 34 | 66 | 0 | 7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Richardson, H.; Bopp, C.; Ha, B.; Thomas, R.; Santhanam, K.S.V. Electrodeposition from a Graphene Bath: A Sustainable Copper Composite Alloy in a Graphene Matrix. J. Compos. Sci. 2021, 5, 9. https://doi.org/10.3390/jcs5010009
Richardson H, Bopp C, Ha B, Thomas R, Santhanam KSV. Electrodeposition from a Graphene Bath: A Sustainable Copper Composite Alloy in a Graphene Matrix. Journal of Composites Science. 2021; 5(1):9. https://doi.org/10.3390/jcs5010009
Chicago/Turabian StyleRichardson, Hayley, Charles Bopp, Bao Ha, Reeba Thomas, and Kalathur S.V. Santhanam. 2021. "Electrodeposition from a Graphene Bath: A Sustainable Copper Composite Alloy in a Graphene Matrix" Journal of Composites Science 5, no. 1: 9. https://doi.org/10.3390/jcs5010009
APA StyleRichardson, H., Bopp, C., Ha, B., Thomas, R., & Santhanam, K. S. V. (2021). Electrodeposition from a Graphene Bath: A Sustainable Copper Composite Alloy in a Graphene Matrix. Journal of Composites Science, 5(1), 9. https://doi.org/10.3390/jcs5010009