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Abstract: Bioceramics are widely considered as elective materials for the regeneration of bone
tissue, due to their compositional mimicry with bone inorganic components. However, they are
intrinsically brittle, which limits their capability to sustain multiple biomechanical loads, especially
in the case of load-bearing bone districts. In the last decades, intense research has been dedicated
to combining processes to enhance both the strength and toughness of bioceramics, leading to
bioceramic composite scaffolds. This review summarizes the recent approaches to this purpose,
particularly those addressed to limiting the propagation of cracks to prevent the sudden mechanical
failure of bioceramic composites.
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1. Introduction

Bone tissue is classified as a calcified connective tissue with several important roles
in the human body, including storing minerals, protecting vital organs, enabling move-
ment, providing internal support, and providing the sites of attachment for muscles and
tendons [1,2]. Bone can be considered as a natural composite made of inorganic com-
ponents (naturally doped calcium phosphates, ~70 wt %), organics (Collagen Type I,
non-collagenous proteins, proteoglycans, cells, ~22 wt %), and water (~8 wt %) [2–4].

The complex metabolism and 3D hierarchic structure of bone tissue give it an innate
ability to heal from minor defects. However, the natural healing process of bone is limited
when major injuries due to traumas or metabolic or neoplastic bone pathologies occur [1,2].
In such instances, the orthopedic surgeon is challenged to find out adequate regenerative
approaches [3]. The use of natural bone grafting (i.e., autologous or heterologous bone) can
be pursued to replace the bone defect. Autografts are considered as the gold standard for
bone grafting, as they closely resemble the natural bone structure, without immunogenic
response. Despite these benefits, some limitations are evident, including the morbidity of
the donor site, increased operation time, increased blood loss, and risk of immunogenicity
and pathogenicity [4–7]. In addition, the sterilization and irradiation processes of natural
bone grafts have been reported as critical steps that limit their bioactivity [8–11].

In this context, a great deal of research effort has been devoted in the last decades
towards the synthesis of synthetic scaffolds [12–15]. The naturally occurring mineral phase
in bone tissue is represented by poorly crystalline calcium phosphates with the crystal
structure of hydroxyapatite (HA). HA can be synthesized in laboratory, and it is currently
under study for the development of bone grafts, due to its excellent biocompatibility,
osteoconductivity, and osteoinductivity [16–22].

In the last decades, bioceramics have been considered as ideal candidates for bone
grafting due to their ability to locally deliver biomolecules in vivo. Calcium phosphates
are a major member of bioceramics, covering a wide range of biomedical applications in
tissue engineering, including orthopedic and dental surgeries [23–26].
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Bioceramics must meet strict criteria to be approved for biomedical applications, such
as biocompatibility, bioactivity, and an absence of proinflammatory features [27]. The
classification of bioceramics is generally based on their chemical composition, as well as on
the basis of their interaction with natural tissues; thus, bioceramics can be considered as
bioinert or bioactive, considering biodegradability as an added value that enables the re-
placement of damaged bone parts with new ones during the scaffold bioresorption [28–32].
In this respect, recent studies demonstrated that the modulation of composition and textu-
ral properties can be considered as a valuable strategy to control material resorption and
bone formation [33,34].

Bioinert ceramics, including alumina, zirconia, and silicon nitride, are not able to
undergo any modification upon implantation, and thus maintain their chemical structure
and represent a foreign body within the biological environment [35,36]. In contrast, bioac-
tive ceramics have the capability to form chemical bonds with the surrounding tissues,
and actively interact with the surrounding environment [37,38]. Among them, calcium
phosphates (CaPs), bioglasses, and calcium silicate (Ca-Si) bioceramics are intensively
studied for skeletal bone regeneration applications [22,39–43].

The osteogenic capability of bioceramic scaffolds is significantly correlated to their
intrinsic pore size distribution and interconnection, enabling cell infiltration, migration,
and neo-vascularization. The pore distribution and geometry of the scaffold strongly
influence the ability of cells to penetrate, proliferate, and differentiate as well as the rate of
scaffold degradation [44–48]. In spite of their great potential, a main drawback associated
with bioceramics is their intrinsic brittleness, i.e., incapacity to withstand deformation
without rupture, which is a major problem that can potentially cause a sudden failure
of the scaffold structure under physiological mechanical loading. This is particularly
relevant for porous calcium phosphates that associate brittleness to limited fracture strength,
in comparison with inert ceramics such as zirconia or alumina [38,49,50]. In the last
century, an intense research effort has been devoted to the reinforcement of bioceramics for
different applications. In this respect, various approaches have been proposed, including
modified sintering treatments [51–53], combination with polymeric phases to produce
composites [49,54,55], the addition of fibers or the development of additive manufacturing
as a 3D technique to prepare complex-shaped bioceramic structures [34,56–60]. A major
approach to this purpose is the addition of ceramic particles, whiskers, and fibers to the
ceramic matrix to improve the fracture toughness [61–65]. Ceramic fibers selected for their
lightweight, adequate strength and modulus, and biocompatibility have been tested in the
last decade for improving the mechanical properties of bioceramics [66–69]. The key factor
influencing the performance of the final material is represented by the interfacial adhesion
between fibers and the surrounding matrix [70]. The main factors affecting the fabrication
of fiber-reinforced scaffolds include the chemical composition of fibers and matrix, the
physical interaction between them, and the amount and alignment of fibers [59,71,72].
These factors affect the mechanical strength and degradation properties of the scaffold,
leading to changes in the cell response. In this respect, many studies have reported the
biocompatibility of fiber-reinforced ceramics both in vitro and in vivo [73–77].

It was observed that smooth fibers with a chemically inert surface are provided with
less reactive functional groups, resulting in poor adhesion with the matrix [78]. Some
studies reported chemical approaches to activate the fibers’ surfaces, in order to strengthen
this interaction [59,79–85].

The present review summarizes the relevant progress made on the mechanical rein-
forcement of bioceramic composites. The fabrication techniques for these scaffolds, along
with the current strategies for toughening mechanisms, are described. Furthermore, the
concerns related to porosity along with the mechanical and biological properties of fibrous
ceramics are reported. As the advances in bone tissue engineering move toward application
in the clinical setting, achieving adequate bioceramic toughness for clinical applications is
particularly critical. In this context, recent computational approaches have been proposed
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in order to predict the crack propagation pathways, while increasing the toughness of
ceramic-based bioinspired materials [86].

2. Bioceramic Composites in Bone Regeneration
2.1. Bone Tissue Formation and Remodeling

The adult human skeleton is made up of 206 bones. Each bone is a very complex
hierarchical structure consisting of osteon, lamellar, fibrils, and mineral and collagen fibers
(Figure 1). The bone is a dynamic tissue that continuously remodels during the life span
of an individual: the term “bone remodeling” refers to a complex biochemical process in-
volving the degradation of the mineralized bone via osteoclasts followed by the deposition
of newly formed bone matrix by osteoblasts [87]. Due to this remodeling, the timing for
complete bone tissue renewal is about 5 to 10 years [88–90]. This helps it in adapting to
ever changing biomechanical forces by replacing the old or micro-damaged bone with a
new and mechanically stronger bone, thereby preserving bone strength [91]. The bone
has a unique ability to shift the intricate balance between osteoclastic and osteoblastic
activities depending upon the external stimuli [92–94]. Such mechano-transduction sig-
nals can amplify the osteoblastic activity, resulting in an enhanced deposition of bone
matrix [44]. In other circumstances, this equilibrium can be triggered by a chemical rather
than a mechanical signal [44,95,96]. After receiving the mechanical signal, osteoclasts are
deployed to the bone to initiate resorption. This process results in the release of calcium
or phosphate to the body fluid as it is crucial for specific metabolic reactions. It is also
assumed that chemokines are responsible for the differentiation-fusion of monocytes into
osteoclasts and for carrying out the subsequent osteoclastic activity [97–99].

In this context, the regulation of osteoblasts-osteoclasts mediated processes plays
a key role in achieving effective bone tissue regeneration [100]. Bioceramic composites
can be engineered for better resorption and bone remodeling by mixing different ceramic
materials [101]. The incorporation of strontium (Sr) into bioceramic composites can im-
prove the bone tissue density via increasing osteoblast function and inhibiting osteoclast
activity [102–105]. In addition, the surface topography also affects the resorption capacity
of osteoclasts [104,105]. It was observed that human peripheral blood monocyte derived
osteoclasts were more actively resorbed onto sub-micro structured β-TCP compared to
microscale topography [106].

Figure 1. Hierarchical structure and mechanism of the formation and remodeling of long bone.
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2.2. Classification of Bioceramic Composites

One major classification of bioceramics relies on the biochemical reactions occurring
between the implanted scaffold and the surrounding tissue, particularly on the increasing
capacity to be resorbed upon implantation in vivo. In this way, bioceramics can be consid-
ered as bioinert, bioactive, or bioresorbable materials [107]. Zirconia (ZrO2) and alumina
(Al2O3) are examples of inert bioceramics with minimal adverse reactions on tissue and
body organs after coming into contact with the human physiology [108]. They have inher-
ently low levels of reactivity compared with other materials, such as polymers and metals,
as well as surface reactive or resorbable ceramics. Strategies for the improvement of the
biocompatibility of inert ceramics were proposed, such as surface modifications, coatings,
or ion doping [109–112].

In contrast, bioactive ceramics, such as bioglasses, show an ability to superficially
bond with the surrounding bone, thus improving their interfacial strength [103,113]. The
ability to bond to bone tissue is a unique property of bioactive ceramics. Analyses of
the bone implant interface revealed that the presence of hydroxyapatite is one of the key
features in the bonding zone [103].

Bioresorbable bioceramics represent a further improvement in their long-term inter-
action with surrounding tissues, because in addition to their chemical similarity to the
mineral component of bone, they are able to be gradually resorbed and replaced by new
bone tissue over time. The in vivo behavior of ceramic bone substitutes includes three main
steps: (i) solubility: if the compound is soluble in physiological conditions, dissolution and
removal can occur; (ii) the dissolution kinetics, related to the speed at which the particular
ceramic is removed from the body; and (iii) conversion into another compound via a
dissolution–precipitation mechanism [114]. Bioresorbable bioceramics are represented by
calcium sulphates (Plaster of Paris) and calcium phosphates, especially with ion doping
with Sr, Mg, Si, and Zn, which can improve their biological activity [19,115–120]. However,
there are some drawbacks of calcium phosphates, such as their poor mechanical strength,
differences between the bone regeneration and degradation rate, inflammatory reaction of
synthetic bioceramics, and limited ingrowth due to pore size [121–123].

In this context, the possibility to introduce additional inorganic phases in bioceramics
opened a wider choice of materials for their use as implants. Some of these materials
include ceramic/ceramic, ceramic/metal, and ceramic/polymer composites. However,
ceramic/polymer composites have been observed to release toxic components in the sur-
rounding tissues, while metals undergo corrosion-related issues as the ceramic coating
on the metallic implant degrades over time [124–126]. Ceramic/ceramic composites are
thought to have a better performance because they resemble bone minerals and exhibit high
biocompatibility [127–129]. Nevertheless, the biological activity of bioceramic composites
has to be defined, especially considering the specific implantation site [130]. Bioceramic
composites have exceptional biocompatibility and are non-toxic [131–133]. Some addi-
tional features of bioceramics composites include their hydrophilicity and antibacterial
properties [134–136].

2.3. Surface Chemistry

The effective chemical interaction between the surfaces of the implanted scaffolds and
the surrounding tissues plays a crucial role in the regeneration of bone tissue [137,138].
The three different types of bioceramics (bioinert, bioresorbable, and bioactive) have
significantly different superficial interactions [139]. It is worth mentioning here that these
fundamental differences in surface chemistry result in different interacting conditions at
the biomolecular interface with cells and proteins [23,140,141].

The implantation of a scaffold into a biological environment is followed by the hy-
dration and hydrolysis of the surfaces, typically leading to the formation of chemical
bonds, containing either hydrogen or hydroxyl groups, with a rate dependent on the pH
environment [142].
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The superficial properties essentially modulate the interaction with water molecules
and the mechanisms of adsorption of biological macromolecules (e.g., proteins). This
interaction ultimately determines the interplay between the implanted bioceramics and
bone cells.

It was reported that an electrostatic attraction primarily affects the protein adsorption
on bioceramic surfaces, and effective surface charge modulation can be achieved by the
immobilization of biomolecules such as bisphosphonates (BPs), amino acids, or carboxylic
acid on the bioceramic surface [140]. Additional factors affecting the protein adsorption and
cell adhesion include surface wettability and surface energy. The tuning of the chemical and
morphological features of bioceramics can be performed by chemical or physical surface
modifications, including atomic layer deposition, chemical vapor deposition, plasma vapor
deposition, and electrochemical deposition [141,143,144].

Chemical treatments generally result in the formation of coating layers or the induction
of specific chemical functional groups (e.g., carbidization, nitration, oxidation), while phys-
ical modifications result in micro- to nanoscale morphological or topographical alterations
via a multitude of processes (e.g., machining, grit-blasting, and etching) [145–147].

2.4. Mechanical Properties

The mechanical properties of bioceramics, including compressive strength, stiffness,
fracture toughness, and fatigue resistance, represent the key factors for effective bone regen-
eration [148]. These criteria include “static” mechanical properties (e.g., stiffness, hardness,
strength), as well as “dynamic” mechanical properties (e.g., fatigue cycle resistance, crack
propagation stability, and fracture toughness) [149].

A major concept in defining mechanical properties of ceramics is the difference be-
tween strength and toughness. They are frequently considered to be overlapped, despite
the fact that they are mutually exclusive—strength is a stress representing the intrinsic
capability of a material to resist to irreversible deformations, while toughness refers to the
energy required to induce a fracture [150].

Toughness can also be determined using fracture mechanics methods, which deter-
mine the critical value of a crack-driving force, such as the stress intensity K, strain-energy
release rate G, or nonlinear elastic J-integral, required to initiate and/or propagate a previ-
ously formed crack.

However, the intrinsic brittleness of ceramics basically limit the capability to improve
the toughness, primarily because they cannot be toughened by promoting plasticity [151].

The compressive strength of the human cortical bone is reportedly in the range
90–209 MPa, while the reported flexural strength is 135–193 MPa [152,153]. The mechanical
strength of bioceramics is reported to be in the range of cortical and cancellous bones [154].
The ideal scaffolds for bone regeneration should be designed considering this feature,
but also considering that extensive bone penetration in a porous scaffold will increase the
mechanical properties of the bone-scaffold construct until reaching physiological levels [44].
In particular, fracture toughness is important because it refers to the ability of the scaffold to
contrast the propagation of a crack defect [155]. Hence, compressive strength and fracture
toughness are relevant properties to be considered for effective bone regeneration [156,157].
The particle size, composition, porosity, and crystallinity of bioceramics significantly
affect their mechanical performance—an increase of porosity and particle size leads to the
decrease of mechanical properties [158–160].

The fracture toughness of cortical bone (KIc = 2–12 MPa·m0.5) is higher than that of
ceramics or inorganic glass [160–162]. Numerous methods have been developed over
time to measure the fracture toughness and hardness [163–165]. The low fracture tough-
ness and poor mechanical strength of bioceramics limits their usage in load-bearing
applications [166,167]. It was reported that the fracture toughness and flexural strength of
bioceramics increase in wet environments [168].

The toughness and flexibility of bone tissue can be ascribed to the complex biominer-
alization of collagen fibers with apatitic crystals, associated to the multi-scale hierarchical
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architecture [168]. The toughness of bioceramics can be improved by including additional
biocompatible phases [169,170], crack bridging, or phase transformation, in order to control
the crack growth [171–173]. The dispersion of second phase such as fibers, whiskers, and
particles for creating toughness in bioceramics was also reported [174–177].

The mechanisms for increasing the toughness of ceramics can be classified as either
intrinsic or extrinsic. Intrinsic toughening is primarily related to plasticity, that is, enlarging
the plastic zone, mainly against the initiation of a crack. Conversely, extrinsic toughening
acts to limit an initiated crack, reduce the stress and strain fields at the crack tip, preventing
further opening, including crack bridging by fibers or ductile phases in composites.

A significant increase of flexural strength, flexural modulus, and fracture toughness
of ceramic dental composites was also reported through the addition of zirconia-silica (ZS)
or zirconia-yttria-silica (ZYS) nanofibers (2.5 wt % or 5.0 wt %) [178,179].

Bioceramic composites made from HA and TZP (tetragonal zirconia polycrystal) pow-
ders coated with Al2O3 also exhibited significantly higher strength and fracture toughness,
due to the integration of ZrO2 (15 vol %) and Al2O3 (30 vol %) [180].

The microstructural and mechanical changes of Al2O3 matrixes, after the incorporation
of Cr2O3, was also studied, resulting in improved hardness and elastic modulus, while
fracture toughness deteriorated with the addition of 2 mol % Cr2O3 particles [181].

It was also reported that Zr–Ti–Nb–Cu–Be glasses containing 42–67 vol % dendrites
exhibited 100–160 MPa

√
m toughness at tensile yield strengths of 1.1–1.5 GPa [182].

A monolithic and amorphous Pd–Ag–P–Si–Ge glass alloy with 1.5 GPa tensile strength and
200 MPa·m0.5 toughness properties was also recently reported; its properties were a result
of the generation of shear band after loading, which resembles large-scale plasticity [183].
Nevertheless, it has drawbacks related to critical processing and production costs [150].

Moreover, researchers produced novel dental restorative composites by using hy-
droxyapatite whiskers. They reported that the efficiency of reinforcement depends on
the filler morphology. Hydroxyapatite has good wettability with polymer which leads to
increased toughness in comparison to nano-size HA powder [184,185]. Two composite
materials have been produced by using ZrO2-Al2O3 system: zirconia toughened alumina
(ZTA) and alumina toughened zirconia (ATZ) [186–191]. The ZTA ceramic composites with
0.5 wt % MgO content exhibited the best attributes, such as a fracture toughness value of
9.14 MPa·m0.5 and a hardness value of 1591 HV. Similarly, the effect of TiO2 phase composi-
tion and mechanical properties of Ca-TZP (calcium stabilized tetragonal zirconia) ceramic
have been observed, with fracture toughness values up to 9.1 MPa

√
m after reinforcement

with TiO2 in the range of 0.5–0.65 mol % [192].
A great research effort for the reinforcement of bioceramics with carbon fibers (CF) has

been established, due to their excellent biocompatibility and mechanical properties [193–195].
The addition of CF to HA matrix effectively improves the bending strength and frac-
ture toughness of HA [177,196]. ZrO2-HAp composites (40 and 60 vol % of ZrO2) were
fabricated and evaluated, demonstrating the reinforcing effect of ZrO2 [174].

3. Toughening Strategies for Bioceramic Composites

The brittleness of bioceramics significantly limits their applications because in addition
to strength, adequate toughness is required to sustain the biomechanical loads [86].

Any crystallographic defect or irregularity within the crystal structure represents the
main cause for dislocations, the mechanisms of which are related to the Peierls–Nabarro
(PN) barrier energy that defines the fracture toughness of a material [197].

Metals contain mobile dislocations, leading to local plasticity and desirable tough-
ness [197,198], while ceramics are characterize by the immobility of dislocations and low
fracture toughness, especially at room temperature [199]. In this respect, the high-strength
ionic bond typical for ceramic structures plays a crucial role, limiting atomic slip systems.

The mechanical performance of bioceramics is closely related to several factors, in-
cluding microstructure, chemical composition, ionic impurities, and structural defects.
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The strategies to improve the toughness or fracture strength of ceramics refer to the capac-
ity to control or limit the propagation of cracks along the powder particles and grains.

Several methods have been reported to improve the toughness of ceramics, including
crack-bridging, crack-deflection, microcrack-induced toughening, generation of phase
transformations, and reduction of the defect size (Figure 2).

Figure 2. Different strategies to improve the toughness of bioceramics.

Moreover, the basic scaffold structure can be combined with polymer coatings, or
interpenetrating polymer-bioactive ceramic microstructures can be formed to improve the
toughness of the ceramic as a simple and effective approach [200].

3.1. Phase Transformation

Toughening phenomena related to phase transformation are well known for zirconia-
containing composites, where the phase transition from the tetragonal to monoclinic phase
is the essential mechanism behind the enhanced toughness of zirconia used for the devel-
opment of dental and orthopedic implants. This approach is based on stress induced phase
transformations, which are mainly responsible for microstructural additional compressive
stresses during the propagation of cracks, which increase the crack growth resistance KIc.

Similar to precipitation hardening, the stabilization of particles in a metastable and
thermodynamically unfavorable state requires overcoming an energy nucleation barrier.
In this case, the modulation of particle volume can be achieved by the application of
adequate tensile stress at the crack tip. Phase transformation is initiated by the presence
of sufficiently large elastic energy. As the particle was metastable prior to the transforma-
tion, the decrease in stress due to an increase in volume does not hamper the process of
transformation [201]. Moreover, compressive stress in radial direction and tensile stress in
circumferential direction around a particle are superimposed to the external load during
the transformation. These compressive residual stresses may result in the reduction of
stress on the crack and hence may partially or completely close the crack. In addition, as
the tensile stress is applied in circumferential direction around a particle it can generate
microcracks, further leading to the dissipation of energy [202,203].

The stress induced transformation is also related to the free enthalpy reduction [204].
The addition of hydrostatic tensile stress strongly decreases the enthalpy of the phase with
a larger volume. This, in turn, increases the driving force for the transformation, enabling
the particle to overcome the nucleation barrier [205,206].
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3.2. Defect Size Reduction

The main limitation of bioceramics’ mechanical properties is related to their brit-
tleness [207–209]. Ceramics generally exhibit higher compressive strength than tensile
strength, essentially due to limitations in stress concentrations and crack propagation
when micropores are flattened instead of dilated [210]. Bioceramics are characterized by
very limited strain to failure and toughness, compared with ductile material counterparts
(e.g., metals, polymers). Tensile stress could cause a fracture to propagate through the
material, often causing failure in ceramic material.

Many defects can occur during the production, finishing, and application of ceramic
because of the foreign particles, porous regions, or large grain sizes (Figure 3) [211].

Figure 3. Different types of processing-derived defects in bioceramics.

A great research effort has been dedicated to the design of ceramic microstructures
with increased toughness and damage tolerance. In this context, the reduction of defect
sizes can also be obtained by the incorporation of various ions such as nickel, silver,
tantalum [212], and strontium [212–214].

Some requirements for reducing the size of defects include an efficient, fast, and
reliable fine grinding, a compact design, and the versatility of the process [215].

The fracture mechanics of bioceramics is mainly affected by the powder particle size
distribution. Grain size is usually tuned towards monomodal or multimodal distributions,
in order to increase the packing density of particles [216]. It was reported that the largest
grain may control the size of largest flaw [217]. Alternatively, grain size can be measured
at the fracture origin [218]. The microstructure is affected by multiple factors (e.g., powder
impurities, thermal treatments of powders, sieving size), complicating the possibility to
understand the role of each factor [24]. This methodology has been in use for the production
of ceramics to obtain a more homogenous microstructure [219–221].

3.3. Crack Deflection

The propagation of cracks in bioceramics is a critical issue that can cause sudden failure
of large structures. Crack deflection can be used as a strategy to increase the toughness of
bioceramics. Some local areas in the bioceramics exhibit low resistance to crack propagation,
resulting in crack deflection [222]. In particular, when a crack is deflected, the surface of
the crack increases, leading to more energy required for crack propagation and an increase
of fracture toughness [221,223]. The prediction of a crack path as the crack approaches
a fiber can be based on an energy criterion or a stress criterion [217,219,220,224–227].
Young’s modulus mismatches are also reported as mechanisms of crack deflection [211].
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The microstructural paths for crack propagation in bioceramics generally reflect the grain
boundaries [211,217,228–230].

The evaluation of crack deflection by disks, rods, and spheres [217] showed that
(1) increased toughness as a result of crack deflection is dependent on particle shape and
volume fraction, and is independent of particle size [231]; (2) a rod-shaped morphology
is the most effective, followed by disk and sphere, for increasing the toughness [232].
An increase in volume fraction of up to 20% increases the toughness, however, very little
increase was observed with a higher volume fraction.

The toughness significantly increases when using rods compared to toughness without
deflecting particles [226,233]. Another cause of crack deflection is partial bridging by grains,
occurring when a grain/whisker causes the deflection of a crack around it, hence leaving
the grain/whisker to bridge the crack [234].

Interactions between crack bridging and crack deflection in silicon nitride containing
rod-shaped grains and whiskers toughened alumina were observed, demonstrating that
crack deflection is crucial for the development of crack bridging [235].

3.4. Microcrack Formation and Crack Branching

Stress-induced microcrack formation and crack branching represent irretrievable
deformation phenomena associated with energy dissipation [151,236]. Microcracks appear
to debond at a poorly bonded matrix particle interface [237,238]. The stress energy near
the tip of the fracture can result in the formation of micro cracks at weak areas in the
bioceramic, for example, due to the undesired orientation of grain boundaries.

It was observed that a microcrack can decreased crack resistance at the macrocrack tip,
which encourages crack progression [239]. The microcrack’s effect on fracture propagation
can be examined in two ways: energy dissipation owing to microcrack generation [170] and
change in local stress intensity factor by simulating the interaction of microcracks with the
main cracks [240,241]. The crack shielding phenomena has a role in microcrack toughening
because of two aspects: the material’s lower elastic modulus as a result of microcracking
and the microcracking-induced dilatation [242].

3.5. Crack Bridges Formation

A variety of reinforcing phases can improve the fracture toughness of bioceramic
composites. The reinforcement in this case bridges the crack surfaces that effectively pins
the crack and increases resistance for any further extension of the crack [243]. It was
observed that these reinforcing phases bridge the crack in the region behind the crack
tip [243]. When the two opposing crack surfaces interact during crack propagation, an
increase in energy dissipation occurs during the propagation of a crack.

This behavior was observed in coarse-grained microstructures with intercrystallite
crack propagation [243,244]. Different varieties of ceramic whiskers (high-strength crystals
with length/diameter ratios of 10 or more), particulates, or fibers can be added to the
matrix material of the host in order to generate a composite that can improve fracture
toughness. This reinforcement strategy relies on two different mechanisms: (i) the pres-
ence of additional particles or fibers represents a deflection stimulus for opening cracks,
against its propagation [238,245,246]; (ii) in case of weak bonds between the matrix and
reinforcement phase, crack propagation energy can be absorbed by pulling out the fiber
from its original location, thus preventing crack propagation by forming a bridge in a crack
and holding the two face together [247].

3.5.1. Particles

Crack bridging is generally induced by the addition of particles that can confer ductile
behavior (e.g., particles with lower Young’s Modulus), as in this condition, additional
work is required to achieve deformations and crack propagation [248]. Moreover, the
addition of ductile particles in bioceramics can also significantly increase their fracture
toughness by forming crack bridging behind the crack tip via a discontinuous but strong
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reinforcing second phase that imposes a closure force on the crack [249]. The mathematical
description of non-linear fracture processes and stress transfer across cracks was proposed
in the Dugdale–Barenblatt model, useful for estimating the effect of particles addition in
increasing toughness [250]. This model encounters the behavior of crack extension when
intersecting the particles: the primary crack propagation is impeded by particles, thus
retarding its interaction with the surrounding cracks [246].

The doping of HA with strontium-doped particles can improve the mechanical prop-
erties [213,214]. The compressive strength was improved from 50 MPa to 66.57 MPa up to
5 mol % Sr/(Sr + Ca) doping [251]. The incorporation of Sr2+ in HA lattice replaces Ca2+

with Sr2+ and form a Ca10−nSrn(PO4)6(OH)2 (Sr-HA). This decreases the crystallization
size and crystallization rate of HA and changes the lattice constant.

The addition of titanium particles was also proposed as a promising approach to
improve the mechanical properties [252]. Titanium and its alloys are considered as some of
the most attractive and important materials due to their unique properties, such as high
tensile strength, resistance to body fluid effects, flexibility, and high corrosion resistance.
They exhibit a unique combination of strength and biocompatibility, which makes them
suitable for biomedical applications. Commercially pure titanium (c.p. Ti) is prominent in
dental implants and Ti-6Al-4V is dominant in orthopedics applications [253].

3.5.2. Whiskers

A whisker is a single crystal in the form of a fiber. Whiskers can be considered as a
sub-group of random fibers, possessing shorter lengths compared to conventional fibers.
They are defect free and thus stronger and stiffer than fibers. Due to these properties,
there is a more pronounced difference in the mechanical properties of a whisker when
compared to bulk materials [254,255]. Materials are crystallized on a very small scale for
the production of whiskers. Internal alignment within each whisker is observed to be
extremely high. The processes that cause toughening in whisker-reinforced ceramics are
considered to be fundamentally similar to those in ceramic matrix reinforced with aligned
continuous fibers [256–258].

3.5.3. Nanosheets

Recently, regenerative medicine focused on the nanosheets applications owing to
their excellent biocompatibility and unique mechanical and physicochemical properties.
Two-dimensional (2D) structures of nanosheets (e.g., 1–100 nm thickness) are characterized
by a large surface-to-volume ratio, ultrathin structure, and enhanced mechanical strength,
which can be substituted with a large number of functional biomolecules [259–261]. They
express a greater ability to interact with polymers through hydrophobic interaction, Van
der Waals force, physical adsorption, and electrostatic attraction. The mechanical strength
and biocompatibility of scaffolds can be improved by combinations of nanosheets with
ceramics polymers [262].

Nanosheets are categorized into monolayered hydroxide nanosheets (MLDHs), poly-
meric nanosheets, metallic nanosheets, and nonmetallic nanosheets. Metallic and non-
metallic nanosheets are used for tissue engineering. They have desirable features for tissue
engineering, such as biocompatibility, mechanical strength, and photothermal and colloidal
stability [78,145,263,264]. Molybdenum disulfide (MoS2), manganese dioxide (MnO2), and
magnesium phosphate (MgPO4) are frequently used metallic compounds, while the com-
monly used non-metallic components include graphene (GN), graphene oxide (GO), and
black phosphorus (BP) [262,265].

Graphene oxide nanosheets (GOns) have improved mechanical ability, a large surface-
to-volume ratio, protein adsorption, and biocompatibility, all of which are important
properties required in tissue engineering [266]. Surface roughness, protein absorption,
hydrophilicity, and cell adhesion can be improved by adding extracellular matrix (ECM)
components such as Col and HAp to the above nanostructured composites [267].



J. Compos. Sci. 2021, 5, 259 11 of 23

Molybdenum disulfide (MoS2) nanosheets exhibit excellent mechanical properties,
including 300 GPa Young’s modulus, a tensile strength of over 23 GPa, and excellent elas-
ticity [266,268]. Graphene nanosheets are mostly used to strengthen HAp scaffolds. After
nanosheets were incorporated into the scaffolds, the elastic modulus of the composite was
increased by 40% to 141 ± 8.50 GPa and the fracture toughness was increased by 80% to
1.06 ± 0.03 MPa [269]. Plasma spray was used to create a graphene nanosheet (GNS) rein-
forced HA on Ti6Al4V substrate. The resulting GNS/HA composite coating has increased
strength and toughness, with ~32.3% and ~54.7%, increases in fracture toughness and
indentation yield strength, respectively [68]. The composite coating’s improved strength
and toughness were attributed to synergetic toughening and strengthening mechanisms
such as load transfer, graphene nanosheet (GNS) pull-out, GNS inter-layer sliding, crack
branching, and GNS bridging. Moreover, the frequent crack deflection when a crack comes
into contact with GNS could tailor the trade-off between strength and toughness through
crack branching and GNS bridging [68].

3.5.4. Fibers

Fibers in ceramic matrix composites (CMC) help increase the fracture toughness, due
to their excellent mechanical properties [270]. Different types of fibers on the basis of length,
i.e., particulates and fiber network, continuous fibers, and short fibers, can be used for the
processing of ceramic matrix composites. For bridging by brittle short fibers, an increase
in interfacial shear forces is observed until it either causes the particle to break or debond
from the matrix. This interfacial debonding, when followed by the subsequent frictional
pulling out process, has a great impact on the toughness of the material. Hull and Clyne
(1996) expressed the fracture energy related to fibers pull-out with the following formula:

∆GPULL−OUT =
∫ l

0

Nπrx2τi
l

dx =
Vf l2τi

3r
(1)

where G represents the interfacial shear strength, r is fiber radius, l is pull-out length, and
N is the number of fibers per unit area.

In bioceramics, the mechanism for fiber reinforcement involves fiber bridging the
crack after its appearance due to stress, impeding its further propagation. Furthermore, the
frictional sliding of fibers against the matrix during pullout further consumes the applied
force that results in increased fracture toughness. The addition of different types of fibers
(e.g., carbon, e-glass, aramid, and polyglactin) increased the strength of bioceramics and
resulted in an increase of approximately two orders of magnitude in the fracture work [271].

Carbon fibers are the preferred choice among researchers compared to all other types
of fibers due to their high strength-to-weight ratio, thermophysical properties, sorption,
and high elastic modulus [272]. Carbon fibers are crystalline filaments of carbon that have
a regular hexagonal pattern of carbon sheets. Moreover, due to their inherent biocompati-
bility (in vivo and in vitro), they are extensively used in the production of artificial heart
valves, purulent wounds, in the treatment of bone fractures, and for making bio compos-
ites. Carbon fibers are produced by high temperature conversion during the pyrolysis of
carbon-rich precursors.

The fracture toughness of bioceramic composites can be increased by adding carbon
fibers. A 300% increase in fracture toughness of alumina-single-walled carbon nanotubes
(SWCNTs) composites was reported [221]. In another report, a 69% improvement in
fracture toughness for silica-CNT composites by loading only 0.05 wt % CNTs was ob-
tained [273]. A significant increase in the fracture toughness of BaTiO3-CNTs composites
was described when loading 0.5, 1, and 3 wt %, respectively [274]. Wang also reported
a moderate improvement of 15% for ZrB2-SiC-multi-walled carbon nanotube (MWCNT)
nanocomposite (2 wt %) [275]. He successfully manufactured composites comprising of
micrometer-sized carbon fibers (CFs) and also made biocompatible nanocrystalline calcium
hydroxyapatite that contained carbon fibers by 1.0, 2.0, and 5.0 wt %. Moreover, he re-
ported the manufacturing of a HAp-carbon fiber composite via hot pressing by using high
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temperature, pressure, and argon atmosphere. The resulting bioceramic composite had
improved fracture toughness and strength [276]. In another instance, the microabrasion
resistance of carbon fiber based reinforced and non-reinforced hydroxyapatite was worked
on. Commercial grade Hap and carbon fibers were used by hot pressing. The researchers
used a temperature of 1000–1150 ◦C and 25 MPa pressure with 15 min pressing time in an
argon atmosphere. Most researchers have used the microhardness indentation method to
the measure fracture toughness (KIc) of carbon-based bioceramic composites due to the
small sample sizes [277].

A chemical treatment performed to activate the fiber surface to improve the adhesion
adhesion with surrounding matrix concerned the conditioning of the fibers surface, using
molecules such as carboxylic acid, sulfuric acid, nitric acid, alkali, formaldehyde, and
isocyanate [276,278–281].

The main drawbacks associated with the use of fiber-reinforced bioceramics include
the tendency of fibers to agglomerate due to their high Van-der-Walls forces of interaction
among carbon particles and light weight, and the low interfacial adhesion between the
fibers and the matrix. This tendency to agglomerate has obstructed their application
in various fields. In this context, surface functionalization/modification processes that
can reduce this agglomeration tendency and increase the fiber–bioceramics interfacial
adhesion through covalent or ionic bonding were proposed [276]. Several functionalization
strategies were reported for fibers, including wet oxidation (oxidation using potassium
permanganate, hydrogen peroxide, sulfuric acid, nitric acid, etc.), dry oxidation (oxidation
by using plasma, air, ozone, etc.), surface adsorption, and encapsulation [282].

The oxidation of carbon fibers can be carried out in both wet and dry conditions [282].
Strong acids, such as H2SO4, HNO3 or a mixture of the two with a strong oxidant, i.e.,
KMnO4, is used for the wet oxidation of CFs and ozone or reactive plasma is used for the
oxidation of CFs in dry conditions. Wet oxidation is the most cost-effective process for the
surface modification of CFs. A few studies have indicated that the addition/activation of
some functional groups on CF surface favors the bonding between bioceramics and carbon
fibers; in particular, defects caused by oxidants on the surface of carbon fibers are stabilized
by bonding with hydroxyl (-OH) or carboxylic acid (COOH) [282,283].

4. Processing Approaches towards Ceramic Toughening

Several approaches have been developed to improve the mechanical properties of
bioceramics [26]. The accurate processing of toughened bioceramic composites involves
many steps, from raw materials to the semi-finished processing, including the synthesis of
powders, controlled drying, calcination, the debonding of organic components, the addition
of second phases, and thermal sintering [284]. The intrinsic features of the ceramic powders
significantly influence each physical (e.g., density, porosity), microstructural (e.g., shape
of grains, grain size, grain boundaries), mechanical (e.g., strength, hardness, toughness,
resistance to fatigue failure,), and chemical (e.g., dissolution, hydrolysis) property of the
final bioceramic composite scaffold.

Essential criteria for the effective preparation and reinforcement of bioceramic compos-
ites are the homogeneous mixing of the matrix and reinforcement phase and a controlled parti-
cle size distribution to optimize the packing density of particles while avoiding agglomeration.

The preparation of powders involves several approaches, classified into dry and
wet chemical methods. The formulation technique has a significant impact on surface
characteristics, powder morphology, stoichiometry, and crystallinity. Dry methods involve
three main types of chemical reactions: thermal decomposition, oxidation/reduction,
and solid-state reactions. In contrast, various methods can be used for the liquid or
wet reaction of bioceramic powders such as hydrothermal synthesis, precipitation, liquid
drying, and sol–gel synthesis [24,285]. The preparation of bioceramic powders, in particular
hydroxyapatite, mainly involves wet chemical methods, especially hydrothermal synthesis
and solid-state reactions [286].
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A promising approach for the toughening of bioceramics is the addition of carbon
fibers into the matrix. The manipulation of carbon fibers can be performed by the solu-
tion powder mixing technique to prepare polymer–carbon composite materials [287] or
biomimetic mineralization to improve the biocompatibility and bone inductivity [83,288].

The consolidation of bioceramic scaffolds is modulated by thermal treatments capable
of improving the interactions among the particles. Sintering is a high-temperature treatment
that can compact the ceramic particles of a pre-shaped green body or powder to consolidate
a solid structure [289]. The major goal of sintering is the densification; fine and uniform
microstructure and bioceramics are typically sintered at temperatures ranging from 500
to 1200 ◦C. The high temperature of sintering provides adequate energy to force material
transport processes such as the migration of grain boundaries via the diffusion of atoms or
evaporation–condensation phenomena, with the aim of reducing the superficial energy
of ceramic particles and eliminating the pores [290]. The sintering can be performed in
different atmospheres, including inert gas or air [291].

Semi-finished processing techniques for bioceramic composites involve a myriad of
techniques, including hand layup, spray up, injection molding, resign transfer molding,
compression molding, filament winding, and pultrusion, according to the type of filler
(particles, whiskers, and fibers) [175,176].

A recently reported approach also explored the possibility to increase the toughness of
bioceramics by introducing a large and controlled density of dislocations, thus leading to
local plasticity [292]. It was observed that conventional sintering, the standard densification
method for ceramics, actually yields ceramics virtually free of dislocations and dislocation
sources. In other words, the brittleness of ceramics appears as merely a consequence of the
established conventional production method.

5. Conclusions

The limited toughness of bioceramics highlights a relevant clinical need, especially
when the regeneration of load-bearing bone portions is required. Despite the multitude of
approaches that have been explored in the past decades, further research is still needed
to improve the performance of sintered bioceramics for clinical use. In particular, fiber
reinforcement is a promising approach, even though some critical issues still remain,
mainly related to the achievement of a strong interface between fibers and the surrounding
matrix and to the thermal fiber decomposition. In this respect, processes based on the
activation of the fibers’ surface or dislocation-toughening have been proposed and are
promising for improving the reinforcement–matrix interface. Relevant research targets for
material scientists in the future will be to focus on new forming processes that can generate
reinforced ceramics with tailored porous architecture, thus enabling advanced applications
in bone surgery.
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