Is Surface Metastability of Today’s Ceramic Bearings a Clinical Issue?
Abstract
:1. Introduction
2. Vm Quantification by Raman Spectroscopy
- Raman spectra need to be fitted (using mathematical expressions) to obtain intensity values of the respective tetragonal and monoclinic peaks. Spectra with different qualities (i.e., different signal-to-noise ratios, SNRs) might lead to different Vm values because of fitting errors. Factors influencing the quality of spectra are the optical system, the laser, the time used for collection/accumulation of spectra, and the quality of the investigated surface.
- Spectra are often affected by a background due to elastic scattering or to the presence of fluorescence (particularly true for Delta). In these cases, a baseline is generally subtracted to avoid the influence of the background on the final result [26]. However, the choice of the baseline might affect the final result as well.
- It is not clear whether the integrated or the absolute intensity of Raman peaks should be used in Equation (1). With Equation (1) being an intensity ratio, this question may seem unimportant; however, the absolute intensity might not fully represent the monoclinic content, especially by low Vm values [29].
- Each spectrometer used for Raman analysis has different characteristics (e.g., the focal length, the number of gratings, the confocal pinhole width) affecting the SNR ratio and the spectral resolution, which could lead to different results if the same material is probed by different equipment.
3. Materials and Methods
3.1. In Vitro Aging Study Samples
3.2. Retrieval Sample
3.3. Characterization Methods
4. Results
4.1. In Vitro Aging Study
4.2. In Vivo Aging Study
5. Discussion
5.1. Use of Clarke/Adar and Katagiri Equations
5.2. Spectral Quality and Fitting
5.3. Proposed Standard Procedure
- First, a series of standard, sintered zirconia samples with a large span of monoclinic content should be prepared in a single batch by the same laboratory or company. These samples should serve as a reference for the calibration of all Raman equipment worldwide.
- Each laboratory should carry out a defined calibration procedure on the standard samples in order to determine the value of the coefficient k for the Katagiri equation that is valid in that specific laboratory.
- The procedure for data treatment, including a minimum SNR, a defined baseline subtraction, and a fitting procedure, should be defined.
- A standard procedure for cleaning the surface of retrievals on all areas, in order to obtain spectra with comparable SNRs over the whole implant, should be defined.
5.4. Significance of Vm
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Rahaman, M.N.; Yao, A.; Bal, B.S.; Garino, J.P.; Ries, M.D. Ceramics for prosthetic hip and knee joint replacement. J. Am. Ceram. Soc. 2007, 90, 1965–1988. [Google Scholar] [CrossRef]
- Bierbaum, B.E.; Nairus, J.; Kuesis, D.; Morrison, J.C.; Ward, D. Ceramic-on-ceramic bearings in total hip arthroplasty. Clin. Orthop. Relat. Res. 2002, 405, 158–163. [Google Scholar] [CrossRef]
- Taddei, P.; Pavoni, E.; Affatato, S. Raman and Photoemission Spectroscopic Analyses of Explanted Biolox® Delta Femoral Heads Showing Metal Transfer. Materials 2017, 10, 744. [Google Scholar] [CrossRef] [Green Version]
- National Joint Registry for England, Wales. Northern Ireland and the Isle of Man, 17th Annual Report 2020. Surgical Data to 31 December 2019, 2020. Available online: https://reports.njrcentre.org.uk/Portals/0/PDFdownloads/NJR%2017th%20Annual%20Report%202020.pdf (accessed on 22 July 2021).
- Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR). Hip, Knee & Shoulder Arthroplasty: 2018 Annual Report; Data Period 1 September 1999–31 December 2017; AOA: Adelaide, Australia, 2018; Available online: https://aoanjrr.sahmri.com/annual-reports-2020 (accessed on 22 July 2021).
- Peters, R.M.; Van Steenbergen, L.N.; Stevens, M.; Rijk, P.C.; Bulstra, S.K.; Zijlstra, W.P. The effect of bearing type on the outcome of total hip arthroplasty. Acta Orthop. 2018, 89, 163–169. [Google Scholar] [CrossRef] [Green Version]
- Report of R.I.P.O. Regional Register of Orthopaedic Prosthetic Implantology Overall Data Hip, Knee and Shoulder Arthroplasty in Emilia-Romagna Region (Italy) 2000–2018. 2020. Available online: https://ripo.cineca.it/authzssl/Reports.html (accessed on 22 July 2021).
- Sharplin, P.; Wyatt, M.C.; Rothwell, A.; Frampton, C.; Hooper, G. Which is the best bearing surface for primary total hip replacement? A New Zealand Joint Registry study. Hip. Int. 2018, 28, 352–362. [Google Scholar] [CrossRef]
- Arita, M.; Takahashi, Y.; Pezzotti, G.; Shishido, T.; Masaoka, T.; Sano, K.; Yamamoto, K. Environmental stability and residual stresses in zirconia femoral head for total hip arthroplasty: In vitro aging versus retrieval studies. Biomed. Res. Int. 2015, 2015, 638502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuntz, M. Live-Time Prediction of BIOLOX®delta. In Bioceramics and Alternative Bearings in Joint Arthroplasty, 1st ed.; Chang, J.-D., Billau, K., Eds.; Steinkopff: Darmstadt, Germany, 2007; pp. 281–288. [Google Scholar]
- Pezzotti, G.; Affatato, S.; Rondinella, A.; Yorifuji, M.; Marin, E.; Zhu, W.; McEntire, B.; Bal, S.B.; Yamamoto, K. In vitro versus in vivo phase instability of zirconia-toughened alumina femoral heads: A critical comparative assessment. Materials 2017, 10, 466. [Google Scholar] [CrossRef] [Green Version]
- Affatato, S.; Ruggiero, A.; De Mattia, J.S.; Taddei, P. Does metal transfer affect the tribological behaviour of femoral heads? Roughness and phase transformation analyses on retrieved zirconia and Biolox® Delta composites. Compos. Part B Eng. 2016, 92, 290–298. [Google Scholar] [CrossRef]
- Zhu, W.; Pezzotti, G.; Boffelli, M.; Chotanaphuti, T.; Khuangsirikul, S.; Sugano, N. Chemistry-driven structural alterations in short-term retrieved ceramic-on-metal hip implants: Evidence for in vivo incompatibility between ceramic and metal counterparts. J. Biomed. Mater. Res. B Appl. Biomater. 2017, 105, 1469–1480. [Google Scholar] [CrossRef] [PubMed]
- Elpers, M.; Nam, D.; Boydston-White, S.; Ast, M.P.; Wright, T.M.; Padgett, D.E. Zirconia phase transformation, metal transfer, and surface roughness in retrieved ceramic composite femoral heads in total hip arthroplasty. J. Arthroplast. 2014, 29, 2219–2223. [Google Scholar] [CrossRef] [PubMed]
- Perrichon, A.; Reynard, B.; Gremillard, L.; Chevalier, J.; Farizon, F.; Geringer, J. Effects of in vitro shocks and hydrothermal degradation on wear of ceramic hip joints: Towards better experimental simulation of in vivo ageing. J. Tribol. Int. 2016, 100, 410–419. [Google Scholar] [CrossRef] [Green Version]
- Pezzotti, G.; Bal, B.S.; Zanocco, M.; Marin, E.; Sugano, N.; McEntire, B.J.; Zhu, W. Reconciling in vivo and in vitro kinetics of the polymorphic transformation in zirconia-toughened alumina for hip joints: III. Molecular scale mechanisms. Mater. Sci. Eng. C 2017, 71, 552–557. [Google Scholar] [CrossRef] [PubMed]
- Pezzotti, G.; Bal, B.S.; Zanocco, M.; Marin, E.; Sugano, N.; McEntire, B.J.; Zhu, W. Reconciling in vivo and in vitro kinetics of the polymorphic transformation in zirconia-toughened alumina for hip joints: I. Phenomenology. Mater. Sci. Eng. C 2017, 72, 252–258. [Google Scholar] [CrossRef] [PubMed]
- Pezzotti, G.; Bal, B.S.; Zanocco, M.; Marin, E.; Sugano, N.; McEntire, B.J.; Zhu, W. Reconciling in vivo and in vitro kinetics of the polymorphic transformation in zirconia-toughened alumina for hip joints: II. Theor. Mater. Sci. Eng. C 2017, 71, 446–451. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Nakashima, S.; Marin, E.; Gu, H.; Pezzotti, G. Microscopic mapping of dopant content and its link to the structural and thermal stability of yttria-stabilized zirconia polycrystals. J. Mater. Sci. 2019, 55, 524–534. [Google Scholar] [CrossRef]
- Otto, A.; Mrozek, I.; Grabhorn, H.; Akemann, W. Surface-enhanced Raman scattering. J. Phys. Condens. Matter. 1992, 4, 1143. [Google Scholar] [CrossRef]
- Rufaqua, R.; Vrbka, M.; Hemzal, D.; Choudhury, D.; Rebenda, D.; Krupka, I.; Hartl, M. Analysis of Chemisorbed Tribo-Film for Ceramic-on-Ceramic Hip Joint Prostheses by Raman Spectroscopy. J. Funct. Biomater. 2021, 12, 29. [Google Scholar] [CrossRef]
- Perrichon, A.; Liu, B.; Chevalier, J.; Gremillard, L.; Reynard, B.; Farizon, F.; Liao, J.-D.; Geringer, J. Ageing, shocks and wear mechanisms in ZTA and the long-term performance of hip joint materials. Materials 2017, 10, 569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perrichon, A.; Reynard, B.; Gremillard, L.; Chevalier, J.; Farizon, F.; Geringer, J. A testing protocol combining shocks, hydrothermal ageing and friction, applied to Zirconia Toughened Alumina (ZTA) hip implants. Mech. Behav. Biomed. Mater. 2017, 65, 600–608. [Google Scholar] [CrossRef]
- Nguyen, T.M.; Weitzler, L.; Esposito, C.I.; Porporati, A.A.; Padgett, D.E.; Wright, T.M. Zirconia phase transformation in zirconia-toughened alumina ceramic femoral heads: An implant retrieval analysis. J. Arthroplast. 2019, 34, 3094–3098. [Google Scholar] [CrossRef]
- Kim, B.K.; Hahn, J.W.; Han, K.R. Quantitative phase analysis in tetragonal-rich tetragonal/monoclinic two phase zirconia by raman spectroscopy. J. Mater. Sci. Lett. 2017, 16, 669–671. [Google Scholar] [CrossRef]
- Munoz Tabares, J.A.; Anglada, M.J. Quantitative analysis of monoclinic phase in 3Y-TZP by raman spectroscopy. J. Am. Ceram. Soc. 2010, 93, 1790–1795. [Google Scholar] [CrossRef]
- Clarke, D.R.; Adar, F. Measurement of the crystallographically transformed zone produced by fracture in ceramics containing tetragonal zirconia. J. Am. Ceram. Soc. 1982, 65, 284–288. [Google Scholar] [CrossRef]
- Pezzotti, G.; Yamada, K.; Sakakura, S.; Pitto, R.P. Raman spectroscopic analysis of advanced ceramic composite for hip prosthesis. J. Am. Ceram. Soc. 2008, 91, 1199–1206. [Google Scholar] [CrossRef]
- Vega, M.M.; Bonifacio, A.; Lughi, V.; Sergo, V. Low-Level Monoclinic Content Detection in Zirconia Implants Using Raman Spectroscopy. In Nano-Structures for Optics and Photonics. NATO Science for Peace and Security Series B: Physics and Biophysics, 1st ed.; Di Bartolo, B., Collins, J., Silvestri, L., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 539–540. [Google Scholar]
- Garvie, R.C.; Nicholson, P.S. Phase analysis in zirconia systems. J. Am. Ceram. Soc. 1972, 55, 303–305. [Google Scholar] [CrossRef]
- Pezzotti, G.; Munisso, M.C.; Lessnau, K.; Zhu, W. Quantitative assessments of residual stress fields at the surface of alumina hip joints. J. Biomed. Mater. Res. Part B Appl. Biomater. 2010, 95, 250–262. [Google Scholar] [CrossRef]
- Tateiwa, T.; Marin, E.; Rondinella, A.; Ciniglio, M.; Zhu, W.; Affatato, S.; Pezzotti, G.; Bock, R.M.; McEntire, B.J.; Bal, B.S.; et al. Burst Strength of BIOLOX®delta Femoral Heads and Its Dependence on Low-Temperature Environmental Degradation. Materials 2020, 13, 350. [Google Scholar] [CrossRef] [Green Version]
- Vega, M.M.; Alois, B.; Vanni, L.; Sergo, V. Fine determination of monoclinic phase in zirconia-based implants: A surface-enhanced Raman spectroscopy (SERS) study. J. Nanosci. Nanotechnol. 2020, 20, 2430–2435. [Google Scholar] [CrossRef]
- Uribe, J.; Geringer, J.; Gremillard, L.; Reynard, B. Degradation of alumina and zirconia toughened alumina (ZTA) hip prostheses tested under microseparation conditions in a shock device. Tribol. Int. 2013, 63, 151–157. [Google Scholar] [CrossRef] [Green Version]
- Piconi, C.; Porporati, A.A.; Streicher, R.M. Ceramics in THR bearings: Behavior under off-normal Conditions. Key Eng. Mater. 2014, 631, 3–7. [Google Scholar] [CrossRef]
- De Fine, M.; Terrando, S.; Hintner, M.; Porporati, A.A.; Pignatti, G. Pushing Ceramic-on-Ceramic in the most extreme wear conditions: A hip simulator study. Orthop. Traumatol. Surg. Res. 2021, 107, 102643. [Google Scholar] [CrossRef] [PubMed]
Raman CONFOCAL | Raman THROUGH-FOCUS | XRD | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Clarke/Adar | Katagiri | Clarke/Adar | Katagiri | |||||||
Vm | STD | Vm | STD | Vm | STD | Vm | STD | Vm | STD | |
Heads | ||||||||||
non-aged | 7 | 5 | 20 | 13 | 6 | 2 | 19 | 7 | 4 | 1 |
aged | 18 | 4 | 49 | 9 | 9 | 2 | 33 | 6 | 11 | 1 |
Inserts | ||||||||||
non-aged | 25 | 8 | 58 | 8 | 15 | 3 | 46 | 6 | 14 | 1 |
aged | 50 | 16 | 80 | 10 | 23 | 8 | 62 | 11 | 21 | 0 |
Roughness (µm) | Vm, Raman (%) | Vm, XRD (%) | ||||||
---|---|---|---|---|---|---|---|---|
Area | Description | Metal | Metal Removed | Confocal (Clarke/Adar) | Confocal (Katagiri) | Through-Focus (Clarke/Adar) | Through-Focus (Katagiri) | |
A | Stripe wear | 0.035 | 0.036 | 5 | 18 | 3 | 5 | |
B | Transition area | 0.012 | 0.017 | 16 | 36 | 8 | 19 | |
C | Main wear | 0.009 | 0.008 | 40 | 49 | 20 | 28 | 17 |
D | Metal transfer | 0.154 | 0.079 | 20 | 35 | 7 | 13 | 17 |
E | No wear | 0.008 | 0.007 | - | - | - | - | 16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Porporati, A.A.; Gremillard, L.; Chevalier, J.; Pitto, R.; Deluca, M. Is Surface Metastability of Today’s Ceramic Bearings a Clinical Issue? J. Compos. Sci. 2021, 5, 273. https://doi.org/10.3390/jcs5100273
Porporati AA, Gremillard L, Chevalier J, Pitto R, Deluca M. Is Surface Metastability of Today’s Ceramic Bearings a Clinical Issue? Journal of Composites Science. 2021; 5(10):273. https://doi.org/10.3390/jcs5100273
Chicago/Turabian StylePorporati, Alessandro Alan, Laurent Gremillard, Jérôme Chevalier, Rocco Pitto, and Marco Deluca. 2021. "Is Surface Metastability of Today’s Ceramic Bearings a Clinical Issue?" Journal of Composites Science 5, no. 10: 273. https://doi.org/10.3390/jcs5100273
APA StylePorporati, A. A., Gremillard, L., Chevalier, J., Pitto, R., & Deluca, M. (2021). Is Surface Metastability of Today’s Ceramic Bearings a Clinical Issue? Journal of Composites Science, 5(10), 273. https://doi.org/10.3390/jcs5100273