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Abstract: This paper summarizes recent advances in strain-hardening ultra-high-performance con-
cretes (UHPC) with synthetic fibers, with emphasis on their tensile properties. The composites
described here usually contain about 2.0% high-density polyethylene (PE) fibers. Compared to
UHPC with steel fibers, strain-hardening UHPC with synthetic fibers generally show a higher tensile
ductility, lower modulus in the cracked state, and relatively lower compressive strength. The ten-
sile strain capacity of strain-hardening UHPC with synthetic fibers increases with increasing tensile
strength. The f’cftεt/w index (compressive strength × tensile strength × tensile strain capacity/tensile
crack width) is used to compare the overall performance of strain-hardening UHPC. Moreover, a
probabilistic approach is applied to model the crack width distributions of strain-hardening UHPC,
and estimate the critical tensile strain in practical applications, given a specific crack width limit and
cumulative probability. Recent development on strain-hardening UHPC with the use of seawater,
sea-sand and PE fibers are also presented.

Keywords: ultra-high-performance concrete (UHPC); strain-hardening cementitious composites
(SHCC); synthetic fiber; polyethylene fiber; tensile behavior

1. Introduction

Two major advances in recent decades in the development of cement-based materials
are ultra-high-performance concrete (UHPC) and strain-hardening cementitious compos-
ites (SHCC). The emphasis on UHPC is to develop a concrete material with ultra-high
compressive strength (e.g., 150–250 MPa), high tensile strength, and excellent durabil-
ity [1–6]. In addition, UHPC reinforced with steel fibers can exhibit exceptional energy
absorption prior to fracture and multiple cracking with extremely small crack widths prior
to crack localization [2]. Compared with ordinary concrete, UHPC shows much lower
water permeability and higher resistance to chloride penetration. On the other hand, the
focus of SHCC is to enable fiber-reinforced cementitious composites with strain-hardening,
multiple cracking, and high tensile ductility [7–13]. Naaman and Shah (1979) [7] published
the first experimental test result on the strain-hardening and multiple cracking behavior
of fiber-reinforced cementitious composites. Naaman (1987) [14] defined the criterion for
forming multiple cracking by stating that the maximum post-cracking stress under tension
must be larger than the stress at the first cracking. In addition, Shah and Shao [8,9,15,16]
conducted pioneer work on discontinuous polyvinyl alcohol (PVA) fiber-reinforced SHCC
fabricated by extrusion process, which exhibited a post-peak strain-hardening response
with an enhanced composite strength. It was found that a larger fiber volume fraction,
longer fiber length, and higher cement content lead to a higher flexural strength, a larger
deflection at peak, and a higher elastic modulus [9]. Using energy considerations, Li
and Leung [17,18] proposed design criteria for fiber-reinforced cementitious composites
with strain-hardening and multiple cracking characteristics. Compared with conventional
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concrete materials, SHCC show significantly higher ductility under both monotonic and
cyclic loadings [19–21], and have been applied in new construction as well as in repair and
strengthening of existing concrete structures [10,22–24].

For fiber-reinforced cementitious composites, both high matrix strength and high
tensile ductility are important in practical applications. For example, UHPC with high
tensile ductility can be used in the durable link slabs for jointless bridge decks or to replace
steel reinforcement in 3D printing structures. The high tensile ductility of UHPC is also
beneficial to its shear resistance after cracking. Therefore, strain-hardening UHPC was
developed with ultra-high compressive strength, tensile strain hardening, and tensile mul-
tiple cracking. It is noted that strain-hardening UHPC can be reinforced with steel fibers or
synthetic fibers. For strain-hardening UHPC with steel fibers, the compressive strength
ranges from 150 to 250 MPa, and the tensile strain capacity ranges from 0.1 to 1.0% [2–4,25].
Compared with strain-hardening UHPC with steel fibers, existing strain-hardening UHPC
with synthetic fibers show relatively lower compressive strength (e.g., 110–210 MPa) but
higher tensile ductility (e.g., 1–10%) [11,26–30]. A strain-hardening UHPC with a com-
pressive strength over 160 MPa and a tensile strain capacity over 3% was developed by
Ranade et al., (2013) [26,27] using 2% by volume high-density polyethylene (HDPE) fibers.
In 2018, Yu et al., (2018) [11] developed a PE fiber-reinforced UHPC with an ultra-high
tensile ductility (8%) and a compressive strength around 120 MPa. Recently, Huang et al.,
(2021) [29] developed hybrid-fiber-reinforced UHPC (with 2% HDPE fibers and 1% steel
fibers) that achieved an ultra-high compressive strength of 211 MPa and a high tensile
ductility of 5.2%. In addition, Xu et al., (2021) [31,32] produced geopolymer aggregate
ECC (using 2% HDPE fibers) with a compressive strength over 120 MPa and an ultra-high
tensile ductility of 9%. It seems that the use of synthetic fibers in UHPC may become a
promising way to realize the combination of ultra-high compressive strength and high
tensile ductility in concrete materials.

In recent years, strain-hardening UHPC with synthetic fibers has attracted increas-
ing attention from researchers and engineers. ACI 239 defines UHPC as concrete that
has a minimum specified compressive strength of 150 MPa. In this study, the authors
collected an extensive set of data from experiments carried out on high-strength strain-
hardening cementitious composites reinforced with synthetic fibers. These materials used
the same principles of fine particle packing and reduced porosity as UHPC but with
compressive strengths ranging from 110 to 211 MPa. In the following, a summary of the
recent advances of these high-strength strain-hardening cementitious composites (termed
as “strain-hardening UHPC”) with synthetic fibers is given while the emphasis is placed
on their tensile properties. The raw materials and mix proportions of strain-hardening
UHPC with synthetic fibers in existing literature are summarized, including their fiber
properties and matrix materials. The overall mechanical performance (compressive, tensile,
and cracking properties) of strain-hardening UHPC with synthetic fibers in existing litera-
ture are assessed and compared. In addition, the tensile properties of recently-reported
strain-hardening UHPC with seawater, sea-sand, and PE fibers are also briefed. Finally, a
probabilistic method is presented to model the stochastic nature and evolution of the crack
width distributions of strain-hardening UHPC at different strain levels.

2. Mechanical Properties of Strain-Hardening UHPC with Synthetic Fibers
2.1. Summary of Strain-Hardening UHPC with Synthetic Fibers

The fiber properties, paste materials, and mechanical properties of strain-hardening
UHPC with synthetic fibers reported in existing literature are summarized in Table 1.

Only the UHPC with a compressive strength over 120 MPa and a tensile strain capacity
over 1% are presented. In addition, to assess the overall performance of strain-hardening
UHPC, the compressive strength (f’c), tensile strength (ft), tensile strain (εt), and average
crack width at the ultimate tensile strain (w) are listed. It is noted that the mechanical
properties of strain-hardening UHPC in Table 1 are the average value of one group of
samples. Among the strain-hardening UHPC in Table 1, the one developed by Huang
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et al., (2021) [29] recorded the highest compressive strength (i.e., 211 MPa) and the one
developed by Li et al., (2020) [32] recorded the highest tensile strain capacity (i.e., 11.0%). In
the following sections, the fibers, matrices, and mechanical properties of UHPC in Table 1
will be discussed in details. It is noted that according to the suggestions in [33], some
of the compressive strengths in Table 1 are corrected to the equivalent strength with the
sample dimensions of 50 mm × 50 mm × 50 mm, and the corresponding values are listed
in brackets.
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Table 1. Summary of strain-hardening UHPC with synthetic fibers in existing literature.

Reference
Fiber Properties

Paste
Mechanical Properties f’cftεt/w

Index
(MPa2/µm)

Cross-Section
of Tensile

Sample (mm
× mm)

Compression
Sample (mm ×

mm × mm)
Type and

Content (Vol.)
Lf

(mm)
Df

(µm)
f’c

(MPa)
ft

(MPa)
εt

(%)
w

(µm)

Ranade et al.,
2013 [26] PE (2%) 13 28 Cem, SF, & SFl 166 14.5 3.4 180 0.45 13 × 30 50 × 50 × 50

Ranade et al.,
2014 [28] PE (2%) 13 29 Cem, SF, & SFl 205 16.1 4.6 135 1.12 13 × 30 50 × 50 × 50

Curosu et al.,
2017 [34]

PE (2%) 6 20

Cem & SF

134 (139) 7.6 3.9 68 * 0.58

24 × 40 100 × 100 × 100Aramid (2%) 6 12 145 (151) 9.4 1.4 15 * 1.27
PBO-AS (2%) 6 13 140 (145) 9.8 1.4 20 * 0.96
PBO-HM (2%) 6 13 143 (149) 8.4 1.6 34 * 0.57

He et al., 2017
[35] PE (1.5%) 19 23 Cem, SF, & SFl 153 15.0 2.3 71 0.74 Not mentioned 50 × 50 × 50

Yu et al., 2018
[11] PE (2%) 18 20 Cem, SF, & GGBS 113 (117) 17.4 8.2 160 * 1.08 13 × 30 100 × 100 × 100

Chen et al., 2018
[36] PE (2.2%) 12 24 Cem & SF 150 (147) 10.8 2.4 48 * 0.81 13 × 30 40 × 40 × 40

Lei et al., 2019
[37] PE (2%) 12 24 Cem, SF, & LP 163 (160) 7.0 6.5 85 0.88 13 × 30 40 × 40 × 40

Lu et al., 2019
[38] PE (2%) 12 24 Cem & SF 132 (130) 10.4 6.4 58 1.52 13 × 30 40 × 40 × 40

Li et al., 2020
[32] PE (2%) 18 19 Cem, SF, & FA 131 12.1 11.0 138 1.26 13 × 30 50 × 50 × 50

Liu et al., 2021
[39] PE (1.5%) 18 20 Cem, FA, & SF 129 13.5 9.7 288 0.59 13 × 30 Not mentioned

Huang et al.,
2021 [29]

PE (2%)
+ST (1%)

PE: 12
ST: 13

PE: 24
ST: 200 Cem, GGBS, SF, & QP 211 16.1 5.2 72 2.45 13 × 30 50 × 50 × 50

Note: * represents that this value was estimated based on the data in the corresponding reference. The mechanical properties are the average value of one group of samples. All mixtures used superplasticizers in
various quantities. PE = high-density polyethylene fiber, Aramid = poly(p-phenylene-terephthalamide) (aramid) fiber, PBO-AS = as-spun poly (p-phenylene-2,6-benzobisoxazole) (PBO) fiber, PBO-HM =
high-modulus PBO fiber, and ST = steel fiber; Paste materials: Cem = cement, SF = silica fume, SFl = silica flour, LP = limestone powder, GGBS = ground granulated blast furnace slag, QP = quartz powder, and
FA = fly ash; Mechanical properties: f’c = compressive strength, ft = tensile strength, εt = tensile strain, and w = average crack width at the ultimate tensile strain.
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2.2. Fiber

Among the existing strain-hardening UHPC with synthetic fibers, four types of syn-
thetic fibers were used (Table 1), including high-density polyethylene (PE) fibers, poly (p-
phenylene-terephthalamide) (aramid) fibers, as-spun poly (p-phenylene-2,6-benzobisoxazole)
(PBO-AS) fibers, and high-modulus PBO (PBO-HM) fibers. In addition, steel fibers were also
used to reinforce the strain-hardening UHPC together with PE fibers in a hybrid manner [29].
The properties of these used fibers are summarized in Table 2. In the table the properties of
PVA fibers are also presented for comparison, which are widely used in normal-strength
strain-hardening cementitious composites. For the strain-hardening UHPC in Table 2, the
fiber volumetric content used varied between 1.5% and 3.0%. PE fibers with 2% volume
fraction were most commonly used, and the fiber length and diameter were 6–19 mm and
12–29 µm, respectively. Compared with PVA fibers in normal-strength strain-hardening
cementitious composites, PE fibers have higher modulus and tensile strength, which are
needed to achieve strain-hardening behavior in a high-strength matrix.

Table 2. Fiber properties.

Fiber
Type

Length
(mm)

Diameter
(µm)

Density
g/cm 3

Young’s Modulus
(GPa)

Tensile Strength
(GPa)

Elongation
(%)

PVA 8–12 24–39 1.3 25–40 0.8–1.6 6.0
PE 6–19 12–29 0.97 80–120 2.5–3.8 3.1–8.0

PBO-AS 6 13 1.54 180 5.8 3.5
PBO-HM 6 13 1.56 270 5.8 2.5
Aramid 6 12 1.39 74 3.4 4.5

Steel 13 200 7.8 210 2.0 5.0
Note: The properties of PVA fiber were obtained from the manufacturer Kuraray and Nycon. The properties of PE, PBO-AS, PBO-HM,
Aramid, and steel fibers were obtained from the corresponding literature of strain-hardening UHPC in Table 1.

Curosu et al., (2017) [34] used aramid, PBO-AS and PBO-HM fibers to develop strain-
hardening UHPC. Compared to the strain-hardening UHPC with PE fibers, the UHPC
made with the aramid and PBO fibers showed a higher cracking strength and a smaller
crack width, and the UHPC with aramid and PBO-AS fibers also showed a higher tensile
strength and more pronounced multiple cracking. In addition, the fiber-matrix bond of
aramid and PBO fibers was reported to be higher than that of PE fibers, owing to the lower
hydrophobic characteristic of the formers compared with the latter. Huang et al., (2021) [29]
developed strain-hardening UHPC with a compressive strength of 211 MPa and a tensile
strain capacity of 5.2% based on the use of hybrid fiber reinforcement (2% PE fibers and 1%
steel fibers), and they observed partial PE fiber rupture at the ultimate state, suggesting an
efficient use of high-strength synthetic fibers in strain-hardening UHPC.

2.3. Matrix

The raw materials of strain-hardening UHPC paste are listed in Table 1. Cement (Cem)
and silica fume (SF) were consistently used in all the UHPC, and the silica fume-to-cement
ratio was 0.20–0.30, which is also widely used in other UHPC materials. In addition, silica
flour (SFl), limestone powder (LP), quartz powder (QP), and fly ash (FA) were also used
in some of the paste. The water-to-cementitious binder ratio was commonly 0.15–0.20.
Generally speaking, the paste materials of strain-hardening UHPC with synthetic fibers are
similar to other UHPC materials, but the matrix shows a comparatively low sand-to-binder
ratio. Heat curing (90 ◦C) was used for some of the strain-hardening UHPC to enhance the
matrix strength.

According to the literature presented, all the UHPC with 2% PE fiber content were
prepared in laboratory. The commonly-used mixing process using small-volume mixer
was as follows: (1) the raw materials of the matrix were dry mixed for 2–3 min; (2) the
water and super-plasticizers were added and mixed for 5–10 min; and (3) the fibers were
then added and mixed for another 5–10 min. It seems that the mixing of UHPC with 2% PE
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fibers by large-volume mixer remains challenging, and more efforts are needed on this
important issue in future study.

2.4. Tensile Performance

Figure 1a shows a typical tensile stress - strain curve of strain-hardening UHPC with
2% PE fibers at the age of 28 days [11]. It is clear that the specimen exhibited tensile strain-
hardening behavior. The DIC images of the tensile specimen at different strain levels are
also presented in Figure 1a. It is clear that multiple cracks saturated over the interested area
as the strain level increases. Most importantly, cracks were not localized even under a high
tensile strain level. The microstructure and morphology of the strain-hardening UHPC
sample were observed on fractured surfaces using secondary electron imaging (Figure 1b).
Due to the high strength of the matrix and the large aspect ratio (i.e., Lf/df = 900) of PE
fiber, the bond strength between the PE fiber and the matrix was strong enough to fracture
the PE fiber. Several fracture surfaces of PE fibers were observed.

Figure 1. Strain-hardening UHPC with PE fibers developed by Yu et al., (2018): (a) tensile stress–strain relation and cracking
mode; and (b) SEM image of PE fibers on tensile failure surface. (Reproduced with permission from [11]).

The tensile stress–strain relations of the hybrid-fiber-reinforced strain-hardening
UHPC with a compressive strength of 211 MPa are presented in Figure 2. The UHPC
achieved an average tensile strength of 16 MPa and an average strain capacity of 5.2%. The
average crack width at the ultimate tensile strain was found to be 72 µm, due to the use
of high fiber volume (3%), and more importantly, a hybrid use of steel fibers (1%) and PE
fibers (2%). Consequently, the crack widths under the service condition would be much
smaller, which is beneficial to the durability performance of strain-hardening UHPC under
combined mechanical and environmental loadings. Figure 2 also presents the DIC strain
fields and crack patterns at four strain levels, and significant multiple cracking phenomena
can be observed.

It should be pointed out that the mechanism of the tensile behavior of strain-hardening
UHPC with synthetic fibers were similar, which follows both the strength and energy
criteria proposed by Li and Leung [17]. For the strength criterion, the maximum fiber-
bridging stress must be no less than the first-cracking stress of the matrix. For the energy
criterion, the complementary energy Jb’ of the fiber-bridging stress vs. crack opening
relation must be no less than the crack tip toughness of matrix Jtip. Based on these two
criteria, steady-state and multiple cracking of the mixtures in Table 1 can be achieved.
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Figure 2. Tensile stress–strain relation and DIC strain field of strain-hardening UHPC with a combi-
nation of PE fibers and steel fibers developed by Huang et al., (2021). (Reproduced with permission
from [29]).

Figure 3 presents the tensile strain capacity vs. the tensile strength relation based on
the data from Table 1 and Yu et al., (2020) [40]. It should be pointed out that the strain-
hardening UHPC with PE fibers reported in [40] used a constant matrix but variable fiber
aspect ratios and contents. A trend line of all the data points is plotted in Figure 3 based on
linear fitting. It is clearly seen that the higher the tensile strength, the higher the tensile
strain capacity. It should be noted that in Figure 3, the tensile ductility exhibits large scatter
given the same tensile strength, because the latter is more dominated by the tensile capacity
of fibers while the former is influenced by many other factors such as the fiber-matrix bond
and the matrix toughness.

Figure 3. Tensile strain capacity vs. tensile strength data from Table 1 and reference [40].

It should be pointed out that the small specimens used in Table 1 could have led to
overestimated tensile performance, because different sizes of tensile specimens can have
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noticeable difference in terms of tensile strength and ductility [41]. The small thickness
of the tensile samples (13 mm) will influence the fiber orientation significantly. For such
specimens, the 18-mm PE fiber in Table 1 should be considered as a two-dimensional distri-
bution rather than a three-dimensional distribution. Hence, the measured tensile ductility
and strength were overestimated. In future study, more attention needs be to paid to the
tensile behavior of PE fiber-reinforced UHPC with three-dimensional fiber distribution.

3. Overall Assessment of Mechanical Properties of Strain-Hardening UHPC

Figure 4 presents compressive strength vs. tensile strain capacity relations of the strain-
hardening UHPC in Table 1. For comparison, the strength vs. ductility relation of strain-
hardening UHPC with the sole use of steel fibers is also presented in Figure 4. Generally,
the compressive strength of strain-hardening UHPC with steel fibers is 150–250 MPa,
and the tensile strain capacity is below 1.0%, while the compressive strength of strain-
hardening UHPC with synthetic fibers was 122–211 MPa, and the rupture strain was
1.4–11.0%. It is noted that more than half of the strain-hardening UHPC with synthetic
fibers showed a compressive strength below 150 MPa. Compared to UHPC with steel
fibers, UHPC with synthetic fibers exhibited higher tensile ductility but comparatively low
compressive strength.

Figure 4. Compressive strength vs. tensile strain capacity relations of strain-hardening UHPC with synthetic fibers in
existing literature.

For strain-hardening UHPC, compressive strength (f’c), tensile ductility (εt), tensile
strength (ft), and average crack width (w) at the ultimate tensile strain are all important
for practical applications. Table 1 summarizes the aforementioned mechanical properties.
It should be noted that some of the crack widths were estimated based on the data in
the corresponding reference, as the actual values were not reported. To assess the overall
performance of strain-hardening UHPC, an index of f’cftεt/w (compressive strength (unit:
MPa) × tensile strength (unit: MPa) × tensile strain capacity (unit: 1)/tensile crack width
(unit: µm)) was introduced by Huang et al., (2021) [29]. As a smaller crack width (w) is
beneficial to the durability of UHPC, the reciprocal of w is used. Note that for the f’cftεt/w
index, the larger the value, the better the performance.
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Figure 5 presents a summary of f’cftεt/w indices of all strain-hardening UHPC in
Table 1. The strain-hardening UHPC developed by Huang et al., (2021) [29] recorded the
highest f’cftεt/w index (i.e., 2.45 MPa2/µm), which was reinforced by 2% (vol.) PE fiber
and 1% (vol.) steel fiber. Lu et al., (2019) [38] used graphene oxide to strengthen the bond
between the PE fiber and the matrix to improve the strain-hardening behavior, and the
corresponding f’cftεt/w index was 1.52 MPa2/µm. The third highest f’cftεt/w index was
achieved by strain-hardening UHPC with aramid fibers. It is expected that the f’cftεt/w
index can also be applied to assess the overall performance of UHPC with steel fibers. In
Figure 5, as a reference the result of UHPC with steel fibers from Wille et al., (2014) [2]
is also presented with the following properties f’c = 250 MPa, ft = 20 MPa, εt = 0.6%, and
w = 40 µm.

Figure 5. Summary of f’cftεt/w indices of strain-hardening UHPC with synthetic fibers.

4. Use of Seawater and Sea-Sand with UHPC and PE Fibers

Recently, the seawater sea-sand UHPC was explored for marine and coastal concrete
structures with non-corrosive reinforcements (e.g., fiber-reinforced polymer (FRP), stainless
steel, and steel-FRP composite reinforcements) [42–44]. It is worth noting that seawater
and sea-sand may not be suitable for producing UHPC with steel fibers, as steel fibers
may be corroded. In such cases, synthetic fibers (e.g., PE fibers) are preferable for the
production of strain hardening seawater sea-sand UHPC (SS-UHPC) [45–47]. Table 3
presents several mix proportions of SS-UHPC with PE fibers (different fiber lengths and
content), and Figure 6 summarizes their compressive and tensile properties, where the
effects of seawater, sea-sand, fiber length, and fiber content are presented.
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Table 3. Material IDs of SS-UHPC with PE fibers in this study.

Specimen
Code

Fiber Length
(mm)

Fiber Content
(%) Water Sand

Control 12 2.0 Freshwater Washed
sea-sand

PE12mm-1.0% 12 1.0

Seawater Unwashed
sea-sand

PE12mm-1.5% 12 1.5
PE12mm-2.0% 12 2.0
PE06mm-2.0% 6 2.0
PE18mm-2.0% 12 2.0

Figure 6. Mechanical properties of SS-UHPC: (a) compressive strength; (b) tensile strength; and (c) tensile strain capacity [46].

The compressive strength of PE12mm-2.0% was 136.8 MPa, while the strength of
control SS-UHPC was 137.1 MPa. The effect of fiber content (1% to 2%) and length (6 mm
to 18 mm) on the compressive strength of SS-UHPC was marginal. For tensile properties,
no obvious differences were observed in the 28-day tensile strength and ductility between
PE12mm-2.0% and the control group. As the fiber content increased from 1.0% to 2.0%,
the tensile ductility and strength increased. The tensile strain capacity and strength of
PE12mm-1.5% and PE12mm-2.0% were close to each other, and hence the fiber content
of 1.5% seems to be enough to achieve both high tensile ductility and strength in SS-
UHPC. As the fiber length increased, the strain capacity increased while the tensile strength
changed little. The setting time of SS-UHPC was found to be slightly shorter than that of
freshwater washed-sand UHPC. However, using seawater and sea-sand seemed to not
change significantly the fiber-matrix bond as well as the tensile strength and ductility of
SS-UHPC [46].

It is noted that the long-term mechanical performance and durability of seawater
sea-sand UHPC are critical for this emerging material, and future research is suggested to
explore these issues. In addition, as the PE fibers were used in seawater sea-sand UHPC,
the high-temperature performance of this material may not be good, because the melting
point of PE fiber (170 ◦C) is comparatively low. To address this issue, PBO fibers (melting
point: 650 ◦C) could be used to improve the high-temperature performance.

5. Probabilistic Modeling of Crack Width Distribution of Strain-Hardening UHPC

The crack widths of strain-hardening UHPC at different strain levels are important
for practical applications. In this section, a probabilistic model is presented to describe the
crack width evolution of strain-hardening UHPC with PE fibers, which was proposed by
Huang et al., (2021) [47]. Figure 7 presents the crack pattern of a strain-hardening UHPC
sample. The strain level A is set as 0.20%; the strain level E is the tensile strain capacity;
and the strain levels B, C, and D divide the strain range between A and E into quarters. The
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crack widths were obtained from high-resolution digital photos, which are summarized in
Table 4. It is noted that the above result is a representative case selected from [47], and the
full database can also be found in [47].

Figure 7. Crack patterns of strain-hardening UHPC with PE fibers. (Reproduced with permission
from [47]).

Table 4. Crack widths and distributions of strain-hardening UHPC with PE fibers. (Reproduced with permission from [47]).

Strain
(%)

Number of Cracks Weibull Distribution

0–15
µm

15–30
µm

30–45
µm

45–60
µm

60–75
µm

75–90
µm

90–105
µm

105–120
µm >120 µm λ k r

A: 0.20 1 2 2 0 0 0 0 0 0 39.1 2.09 0.94
B: 1.56 3 7 8 7 0 0 0 0 0 47.9 2.55 0.96
C: 2.92 4 7 9 9 4 2 0 0 0 55.8 2.31 0.98
D: 4.28 2 7 11 8 7 4 1 0 0 62.6 2.42 0.98
E: 5.64 2 10 8 15 7 3 0 2 1

(150 µm) 63.7 2.49 0.98

The probabilistic model for the crack width evolution of strain-hardening UHPC can
be obtained as follows. First, the cumulative distributions of crack widths at different
strain levels were found to follow the Weibull function (Equation (1)), as the correlation
coefficient r in Table 4 is close to 1. It is noted that the correlation coefficient in this section
was obtained from the curve fitting using Origin 9.1 software.

FW(w0) = 1 − exp
(
−
(w0

λ

)k
)

(1)

where w0 is the crack width; λ and k are the scale and shape parameters of the Weibull
function, respectively; and Fw(w0) is the cumulative distribution function.

Second, the functions linking λ and k to the tensile strain levels are introduced. It
was found that λ increased almost linearly with increasing tensile strain ε. Therefore,
Equation (2) can be obtained:

λ = Aε + B (2)

where A and B are the coefficients from the linear fitting. Equation (2) indicates that the
average crack width increases linearly with the tensile strain. For the sample in Figure 7,
A = 4.7 and B = 40.1 µm, and the correlation coefficient r is 0.974 (close to 1). As the
variation of the k values at different strain levels is limited, for simplicity, the Weibull shape
parameter k is assumed to be a constant (using the average value kavg) (Equation (3)). For
the sample in Figure 7, kavg = 2.37.

k = kavg (3)
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Third, by introducing Equation (2) and Equation (3) into Equation (1), the cumulative
distribution of w0 at a given tensile strain ε can be expressed as:

F(w0) = 1 − exp

(
−
(

w0

Aε + B

)kavg
)

(4)

According to Equation (4), the following equation can be obtained.

w0 = (Aε + B)(− ln(1 − F(w0)))
1/kavg (5)

In Equation (5), for a given tensile strain ε and cumulative probability F(w0), the crack
width w0 can be calculated.

The model and test results of the crack width distributions at different strain levels
are plotted in Figure 8. The crack width vs. tensile strain relation at three cumulative prob-
abilities (0%, 50% and 99%) are also presented. The model results show good agreement
with the test ones, indicating that the model can describe the crack width evolution of
strain-hardening UHPC. To control the crack width in practical applications, the model
can be used to estimate the critical tensile strain of UHPC for a given crack width limit
and cumulative probability. For instance, by setting F(w0) = 99% and w99% = 100 µm in
Equation (5), the critical tensile strain of the sample in Figure 8 should be no more than
2.64%. It is expected that this model can also be used for strain-hardening UHPC with
steel fibers. In future studies, this method can also be applied to model the crack width
evolution of other strain-hardening cement-based materials [31,48,49].

Figure 8. Model and test results of crack width distributions of strain-hardening UHPC with PE
fibers at different tensile strain levels. (Reproduced with permission from [47]).

6. Conclusions

In this study, recent advances of strain-hardening UHPC with synthetic fibers are
summarized, including their mechanical properties (especially tensile properties), raw
materials used (fiber, matrix, and utilization of seawater and sea-sand), and probabilistic
modeling of crack width evolution. The following conclusions can be drawn.
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• Among the strain-hardening UHPC with synthetic fibers, PE fibers with 2% volume
fraction were most commonly used, and the fiber length and diameter were 6–19 mm
and 12–29 µm, respectively. The paste raw materials of strain-hardening UHPC with
synthetic fibers are similar to other UHPC, but with a comparatively low sand-to-
binder ratio (commonly 0.2–0.5).

• The tensile strain capacity of strain-hardening UHPC with synthetic fibers increases
with its tensile strength.

• For the same fiber volume fraction, strain-hardening UHPC with synthetic fibers
show higher tensile ductility but lower compressive strength than strain-hardening
UHPC with steel fibers. The index f’cftεt/w can be used to compare their overall
performance. To the best of the authors knowledge, the use of seawater and sea-sand
in UHPC (SS-UHPC) with PE fibers appears to be a new development. SS-UHPC with
a compressive strength over 130 MPa, a tensile strength over 8 MPa and a tensile strain
capacity over 5% is described. Overall, it is observed that using seawater and sea-sand
had almost no negative effects on the 28-day mechanical properties of strain-hardening
UHPC with PE fibers.

• The probabilistic approach followed here can be used to model the stochastic nature
and evolution of the crack width distributions of strain-hardening UHPC at different
strain levels; it can be applied to estimate the critical tensile strain of strain-hardening
UHPC for a specific crack width limit and cumulative probability.
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