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Abstract: The main objective of this study was to investigate the mechanical behavior of 3D printed
fiberglass-reinforced nylon honeycomb structures. A Continuous Fiber Fabrication (CFF) 3D printer
was used since it makes it possible to lay continuous strands of fibers inside the 3D printed ge-
ometries at selected locations across the width in order to optimize the bending behavior. Nylon
and nylon/fiberglass honeycomb structures were tested under a three-point bending regime. The
microstructure of the filaments and the 3D printed fractured surfaces following bending tests were
examined with Scanning Electron Microscopy (SEM). The modulus of the materials was also evalu-
ated using the nanoindentation technique. The behavior of the 3D printed structures was simulated
with a Finite Element Model (FEM). The experimental and simulation results demonstrated that 3D
printed continuous fiberglass reinforcement is possible to selectively adjust the bending strength of
the honeycombs. When glass fibers are located near the top and bottom faces of honeycombs, the
bending strength is maximized.

Keywords: additive manufacturing; continuous fiber fabrication (CFF); honeycomb structures; glass
fiber; nylon; finite element analysis

1. Introduction

Additive Manufacturing (AM), or 3D printing, is widely used for the fabrication
of polymer components ranging from prototypes to final products. Various Additive
Manufacturing techniques for polymer manufacture have been developed, such as Stere-
olithography (SLA), Selective Laser Sintering (SLS) and Fused Deposition Modelling (FDM).
The latter is the most widely utilized system for polymer AM manufacturing offers rela-
tively low costs, low material consumption and ease of use. However, one of the drawbacks
of 3D printing technology has been the low mechanical strength of the raw utilized ma-
terials [1–3]. The most common materials limit the use of 3D printing to prototyping
and modeling, without being able to produce usable products, as they are weak and brit-
tle. Nowadays, 3D printing materials can be used in many demanding applications and
fiber-reinforced 3D printed materials in particular have a promising future [4]. Several
research studies have reported 3D printing structures reinforced with different kinds of
short fibers or inclusions [5–9]. One of the latest efforts in this direction has been made
through the application of Continuous Fiber Fabrication (CFF) 3D printing machines,
which lay continuous composite fibers, such as Kevlar and carbon fiber, inside 3D printed
thermoplastics to improve their mechanical properties [10–15]. Blok et al. [16] investigated
and compared these two different methods of composite 3D printing, continuous fiber
printing and short fiber printing, in terms of their mechanical properties, part quality and
3D printing versatility. The tensile strength and stiffness of the continuous fiber printed
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parts were 986 MPa and 64 GPa, respectively. A drawback of the continuous fiber printer,
however, is limited control over the placement of the fiber and the formation of voids when
3D printing more complex shapes.

Melenka et al. [17] carried out tensile tests on four combinations of Kevlar-reinforced
tensile coupons that were built using the MarkOne™ 3D printer by Markforged. The
testing outputs showed that an increase in the volume of fiber reinforcement led to an
increase in the ultimate strength and stiffness of the test samples. In another study, the
idea of designing the nozzle in a way to uniformly mix the carbon fiber and PLA resin was
analyzed [18]. Due to the weak bonding behavior between carbon fiber and PLA resin, the
preprocessing of carbon fibers was essential in order to achieve better interfacial strength.
The experiments indicated that the modified carbon fiber-reinforced composites demon-
strated 164% and 13.8% higher flexural strength and tensile strength, respectively, than the
original carbon fiber-reinforced samples. In addition, the modified carbon fiber-reinforced
samples presented higher storage modulus than the PLA and original fiber-reinforced
samples, at about 166% and 351%, respectively. Furthermore, the results from the Scanning
Electron Microscope (SEM) indicated better fiber matrix bonding behavior of the carbon
fiber preprocessed printing technology. In order to study how different reinforcements
affect energy absorption, Petrone et al. [19] compared two different specimens under low
velocity impact loading. The first consisted of polyethylene honeycombs reinforced with
continuous-unidirectional fibers and the second consisted of short-random fibers. The
presence of face sheets and the influence of core height were investigated for each speci-
men. The cores made from continuous fiber-reinforced composite, presented a large elastic
region and increased peak loads, showing a better response to impact loading compared
to the short fiber-reinforced composites. The presence of face sheets enhanced the energy
absorption of the panels due to the fact that the energy was dissipated during bending
and stretching the face sheets. However, this phenomenon seemed to reduce at larger
core heights. This was also supported by statistical analysis based on the Taguchi method,
which presents an important antagonistic interaction between the existence of face sheets
and the core height. Finally, for high strain rate applications and for large deflections,
thermoplastic honeycomb cores reinforced with continuous fibers presented higher peak
force transmission.

López et al. [20] evaluated the elastic properties of 3D printed carbon fiber pylon
under compression stress and compared them with experimental data, in order to estimate
its properties and allow the use of Finite Element Analysis (FEA) tools. The results from the
FEA of the 3D printed reinforced material demonstrated a relative error of 16.4%. However,
several factors affected the mechanical behavior of the reinforced polymer. These included
the width, the distance between extruded filaments, the layer thickness, and the filament
pattern. Given such complexity, the relative error obtained was considered acceptable.
Further simulations for a prototype were also developed, showing that the prototype
exceeded the yield point at 42.03 MPa.

Another important difficulty in the process of simulating 3D printed materials in
FEA software is the determination of the parameters that may affect the tensile strength
of the printed structures. Parameters such as the orientation angle, type of material and
infill rate were selected by Heechang et al. [21] in order to estimate which of them affected
the mechanical properties of the specimens. An optical microscope was used to test any
effects on the extruded filament. The best mechanical properties were found in materials
in the x-direction, with fill rates of 100% (using PLA), and it was also possible to print
products with improved mechanical properties using these factors. Considering the fact
that PLA and ABS are the most common filaments, experiments in order to verify the
difference in tensile strength have been conducted by taking into account the proportion of
these materials. However, the results from the Analysis Of Variance (ANOVA) showed the
inadequate extrusion of FDM as a 3D printing method. The problem was that potential
overlaps and voids may occur in the boundary between two 3D printed materials. To solve
such problems, the researchers changed the structural design by adding horizontal layers
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and vertical lines. However, simply adding more vertical lines to the product may still be
ineffective, since overlaps and voids may exist between the materials. Nevertheless, an
additional horizontal layer improved the mechanical behavior of the part [22].

Honeycomb with hexagonal cells is the most common structure amongst cellular
materials and can be easily fabricated using different technologies and materials. However,
to meet the specific needs of many applications, hexagonal honeycomb structures evolved
into many new forms in the industrial environment, leading to rapidly increasing diversity
from traditional engineering to micro- and nano-fabrication [23]. Honeycomb structures
make it possible to save materials, as well as reducing the weight and cost of the structures
during the design process. Furthermore, honeycomb structures feature relatively high
compression and shear properties [24]. Generally, the internal angles of honeycombs are
different and do not feature cell walls of equal lengths. In addition, the thickness of the
cell walls may not be the same [7]. Honeycomb structures are usually built of sheets or
plates that form the edges of unit cells, with their thickness ranging from micrometers to
millimeters. Most honeycombs are closed cell structures. To create a honeycomb structure,
these unit cells are usually repeated in two dimensions. Another important characteristic
of honeycomb structures is the relative density, which is the ratio between the density of
the cellular structure and that of the solid [22].

In the current study, a composite filament fabrication 3D printer was used in order to
investigate the mechanical behavior of a composite structure in a honeycomb configuration.
The specimens were tested in three-point bending and examined with SEM; the prediction
of their deformation behavior was achieved by studying the structures using finite element
analysis. The validation of the finite element model was performed using a nylon 3D
printed honeycomb configuration. In this article, the possibility of creating a strong fiber
reinforced honeycomb core is studied.

2. Materials and Methods
2.1. Manufacturing Process Using Continuous Fiber Fabrication

A Continuous Fiber Fabrication (CFF) 3D printer (Markforged Mark Two™, Mark-
Forged, Somerville, MA, USA) was used for the fabrication of the honeycomb structures.
The geometry of the test specimens was created using a Computer Aided Design (CAD)
software package (SolidWorks™, Dassault Systems, Waltham, MA, USA). The geometry
was exported as a stereolithography file (STL) and loaded into a 3D printer slicing soft-
ware package (Eiger™, MarkForged, Somerville, MA, USA). All the specimens were 3D
printed with a nylon filament (Nylon, MarkForged, Somerville, MA, USA) with glass
fiber reinforcement (Glass Reinforcement, MarkForged, Somerville, MA, USA). Two infill
strategies are available in the specific continuous fiber fabrication 3D printers utilized, as
illustrated in Figure 1. The first is the Concentric fill, which simply traces a specific number
of shells within the walls of the designed part. This fiber-filling approach prevents bending
around the Z axis and essentially reinforces the walls of the part, preventing the walls from
deforming. The second reinforcement option is the Isotropic Fiber fill pattern. This pattern
effectively creates a unidirectional ‘sheet’ of fiber on each applied layer by routing all the
fibers parallel to each other in a single angular orientation, with 180 degree turns when the
path reaches the edge of the part. The Isotropic Fiber fill pattern reinforces bending in the
XY plane because any bending forces applied in that plane will generate a tensile load on
at least some of the fibers, which are strongest in tension.
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fiber reinforcement for all walls, (e) for outer walls and (f) for inner walls. (g) Isotropic fill reinforcement with 0°, (h) 45° 

and (i) 90° with one, two and three concentric walls, respectively. 

One important aspect that should be noted is that isotropic fiber, by default, puts two 

concentric rings of fiber around the outside of the part. This choice ensures a smoothly 

reinforced external surface as the outermost fibers are parallel and continuous to the edge 

of the part. 

Figure 1. Isotropic reinforcement with (a) 0◦ orientation, with (b) 45◦ orientation and (c) 90◦ orientation, (d) concentric fiber
reinforcement for all walls, (e) for outer walls and (f) for inner walls. (g) Isotropic fill reinforcement with 0◦, (h) 45◦ and (i)
90◦ with one, two and three concentric walls, respectively.

One important aspect that should be noted is that isotropic fiber, by default, puts two
concentric rings of fiber around the outside of the part. This choice ensures a smoothly
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reinforced external surface as the outermost fibers are parallel and continuous to the edge
of the part.

Therefore, the shape and the size of all the specimens are affected significantly from
the composite filament capabilities. The importance of the width as a designed feature in
3D printed honeycombs has been shown elsewhere [25]. Another very important feature
in the current study is the thickness of the honeycomb’s walls. The decision to choose
concentric reinforcement was also made, since it makes it possible to study continuous fiber-
reinforced honeycombs with relatively thin widths. Furthermore, at least two concentric
glass fiber rings around each honeycomb were used with this approach. This helped to
avoid problems that may have been caused by using only one concentric fiberglass ring.
By taking into account all the above details and by studying how the printer operates, the
decision to create honeycombs with a wall thickness of 6.5 mm was made. Figure 2 presents
the designed honeycomb structure that was 3D printed and investigated mechanically
with bending tests and FEA. As shown in Figure 2a the total dimensions of the structure
were 126 mm × 122 mm with a 5 mm thickness. Figure 2b shows the above honeycomb
structure, represented in Eiger™ software. The walls with concentric continuous glass
fiber reinforcement are easily observed. It should be noted that the proposed honeycomb
structure could be only a part of a larger one, as shown in Figure 2c. However, currently
there are important restrictions both in size and time needed in order to print a very large
structure using the continuous fiber fabrication method.
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Figure 2. (a) Technical drawing of the designed honeycomb structure as specimen; (b) honeycomb
structure in Eiger™ Software, by Markforged; and (c) extended honeycomb structure.

A further important detail is the minimum thickness of the 3D printed fiber. This
thickness is 0.1 mm for fiberglass. As well as the pure nylon specimens, two different
positions of the reinforcement along the build axis were applied. The layer height was
selected as 0.1mm and there were 50 layers in total. The positioning of the reinforcement is
shown in Figure 3a,b using Eiger™ software. In the first case, nylon/FG 2-4, the sequence
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was 10 layers of nylon – 10 layers of fiberglass – 10 layers of nylon –10 layers of fiberglass
–10 layers of nylon (30 layers of nylon and 20 of Fiberglass). Thus, the thickness of the
structure was divided into 5 parts (5× 1 mm) and the fiberglass reinforcement was added in
positions 2 and 4. In the second case, reinforcement with Nylon/FG Central, the sequence
was 15 layers of Nylon –20 layers of fiberglass – 15 layers of Nylon, where again the total
was 30 layers of Nylon and 20 of Fiberglass. In this case, the thickness of the structure was
divided into 3 parts and the 20 layers of the fiberglass reinforcement were located centrally.
A 3D printed fiberglass-reinforced sample is shown in Figure 4. The photographs were
taken during the 3D printing process.
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2.2. FEM of Continuous Fiber-Reinforced Cellular Structures

Currently, little information can be found in previous research concerning 3D printed
cellular structures reinforced with continuous fibers, since the majority of these studies
focus on reinforcement with short, randomly dispersed fibers [26,27]. A more detailed
illustration of the assembly of a nylon/fiberglass reinforced honeycomb structure was
imported in ANSYS and it is presented in Figure 5a. Both the nylon and the fiberglass parts
are discrete. In order to ensure the mesh-independent response, a convergence study was
performed. Based on the convergence results performed for the elastoplastic response of the
honeycomb structures, an average element size of 1.0 mm was considered to be adequate
to obtain acceptable accuracy in the calculated responses, as shown in Figure 5b. In the
current FE analyses, up to 158,497 nodes and 22,048 elements were used for the generated
mesh. The boundary conditions are illustrated in Figure 5c. They were considered to be
simply supported, while the force was applied on the surface of the middle pin. The contact
between the 3D printed specimen and the support pin was considered frictional.
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Figure 5. (a) Geometry of nylon honeycomb structure reinforced with fiberglass, (b) the corresponding mesh in ANSYS and
(c) nylon honeycomb structure at three-point bending test.

It should be noted that the Finite Element Analysis (FEA) for these structures focused
on the elastoplastic region of the stress-strain diagram by utilizing a multilinear kinematic
hardening model. This procedure is repeated until the last pair of force depth values has
converged and the loop ends. In this study, a total of 40 steps of simulation was considered
adequate to fit the curve of the force displacement data from the bending tests.

2.3. Microstructure Analysis

The fracture surfaces of the CFF 3D printed specimens were characterized with a
Scanning Electron Microscope (Phenom ProX, ThermoFisher Scientific, Waltham, MA,
USA) coupled with an energy dispersive X-ray spectroscopy (EDX). The images were
acquired from the cross-section area of the 3D printed specimens. The samples were
mounted onto double adhesive conductive carbon tabs (TED Pella, Redding, CA, USA) on
an aluminum stub (placed in a charge reduction holder) without coating and scanned at an
accelerating voltage of 10 kV.

2.4. Nanoindentation Tests

Instrumented indentation tests were performed in order to define the material pa-
rameters of nylon and fiberglass of the honeycomb structures and utilize them in a Finite
Element Model. Nanoindentation tests implicate the contact of an indenter with a mate-
rial’s surface and its penetration to a predetermined depth or load. The indentation force is
measured along with the penetration depth.

The nanoindentation tests were performed on a DUH-211S Shimadzu (Kyoto, Japan)
device, with a load resolution of 0.196 µN. The indenter was a Berkovich diamond tip (the
tip shape is a three-sided pyramid, with a triangular projected geometry and an included
angle of 65◦; the tip radius is 100 nm). Several points were selected using an optical
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microscope integrated into the indenter and these were distributed on the surface of the
samples. At least ten measurements were performed per sample. The modulus and the
hardness of the coatings were determined based on the work of Oliver and Pharr [28].
The indentation hardness can be determined as a function of the maximum penetration
depth [29–32]. The hardness can be calculated as a function of the maximum penetration
depth of the indentation:

H =
Pmax

A
(1)

where Pmax is the maximum applied load measured at the maximum depth of penetration
(hmax) and A is the projected contact area between the indenter and the film. For a perfect
Berkovich indenter, A can be expressed as a function of the contact indentation depth hf as:

A = 3
√

3h2
f tan265◦ = 23.96h2

f (2)

The contact indentation, hf, n be determined from the following expression:

h f = hmax − ε
Pmax

S
(3)

where ε is a geometric constant ε = 0.75 for a pyramidal indenter and S is the contact
stiffness that can be determined as the slope of the unloading curve at the maximum
loading point, i.e.,

S =

(
dP
dh

)
h=hmax

(4)

The reduced elastic modulus Er is given by:

Er =
S

2β

√
π

A
(5)

where β is a constant that depends on the geometry of the indenter. For the applied
Berkovich indenter, the parameter β was equal to 1.034. The specimen’s elastic modulus
(Es) can then be calculated as:

1
Er

=
1− υ2

s
Es

+
1− υ2

i
Ei

(6)

where Ei,s and νi,s are the elastic modulus and the Poisson’s ratio for the indenter and the
specimen, respectively. Moreover, for a diamond indenter, Ei is 1140 GPa and νi is 0.07. The
specimen’s hardness H and elastic modulus Es were computed from the set of equations
documented above.

2.5. Flexural Tests

The honeycomb structures were subjected to three-point bending tests using a uni-
versal Testometric M500-50AT (Testometric Company, Rochdale, UK) testing machine
equipped with 50 kN load cell, according to ASTM D590. The experimental setup is shown
in Figure 5c. The support span was set to 128 mm. At least three specimens were prepared
and tested for each sample type; Nylon, Nylon/FG Central and Nylon/FG 2-4. The load-
ing and supports noses featured a diameter of 10 mm. The crosshead speed was set to
5 mm/min.

3. Results and Discussion
3.1. Material Characterization of Nylon- and Fiberglass-Reinforced Cellular Structures

Figure 6 shows SEM images at different magnifications of the fracture surfaces from
the samples manufactured by the CFF 3D printing technique. To qualitatively determine
the extent of the porosity within the glass fiber-reinforced composites, their cross-sections
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were examined using SEM. The void inclusions were concentrated within and around the
glass fiber bundles as illustrated in Figure 6a. A weak bond between the glass fibers and
the nylon matrix was observed, indicating that the fibers were not consistently bonded to
the matrix. This poor bonding was more profound in the glass filament, which featured
high levels of porosity compared to the 3D prints. Indeed, as illustrated in Figure 6b, the
porosity in the printed specimens was reduced compared to the glass fiber filament. This
is likely to have contributed to the expected good structural integrity and strength of the
samples. Similar observations were observed elsewhere [33].
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Figure 6. SEM microstructure of the cross section of nylon and nylon/fiberglass showing that (a) the
glass filament (within the red dotted circle) contained empty space around fiber bundles and (b) the
3D printed specimen contained no extensive visible porosity.

Additionally, the EDX analysis, shown in Figure 7, revealed an inhomogeneous
dispersion of fibers, as revealed from the detection of silicon in the X-ray elemental maps.
The top part of the images shows the neat Nylon matrix, since no silicon was detected in
this area.
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Figure 7. Energy dispersive X-ray (EDX) mapping analysis of 3D printed specimens showing layers
with and without the presence of glass fibers.

Following the morphological analysis, the mechanical behavior of the neat nylon and
nylon/fiberglass specimens was examined using nanoindentation testing. In Figure 8a,
the load-depth curves are illustrated for the neat nylon and nylon/fiberglass specimens,
as measured on the nanoindentation tests. The maximum indentation depth exhibited an
average value of 3.7 ± 0.4 µm for the nylon specimens. The maximum indentation depths
were between approximately 1.9 to 3.9 µm for Nylon/Fiberglass specimens. This can be
attributed to the fact that the indenter was applied on the nylon and nylon/fiberglass parts,
as the measurements were scattered on the surface of the sample, as illustrated in Figure 8c.
The average elastic modulus for the nylon specimens was 1069 MPa. The modulus for the
nylon/fiberglass specimens varied on the nanoindentation point, returning values between
1210 MPa and 7352 MPa.
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Figure 8. Comparison of typical load depth nanoindentation curves of (a) nylon and (b) nylon/Fiberglass, while (c)
represents SEM of the scattered nanoindentation points on the cross section of nylon/Fiberglass specimens.

3.2. Experimental and FEA Bending Behavior of Nylon- and Fiberglass-Reinforced Cellular
Structures

In this section, nanoindentation, flexural, and FEM-extracted stress-strain properties
of the added manufactured nylon and glass fiber-reinforced nylon cellular structures are
presented. Three specimens were tested per material for each type of test. It should be
noted that the volume fraction of the glass fiber is 12 vol%.

Although there is much relevant research available on nylon and fiberglass, properties
such as the elasticity modulus and the density of the materials that were utilized in
the FEM were measured in detail. The elasticity modulus was calculated through the
Oliver–Pharr method from the nanoindentation curves, where the highest values were
utilized in the FE analysis. It is important to emphasize that due to the imperfections that
3D printed technology may cause in the structure (gaps in the main body of the build
item), the theoretical density of the material is not the same for the 3D printed construct.
This phenomenon may cause significant problems, since high-precision details should be
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available in order to build a reliable FEA model. The method that was used in order to find
the accurate density of the material was to print the structure and then obtain its volume
accurately using the SolidWorks model. By weighting the 3D printed structure (calculating
the mass) and dividing the mass by the volume, the actual density was determined.

It should be noted that multilinear isotropic hardening models were used in order
to obtain a more precise plastic deformation of the honeycomb structures. The important
property of multilinear isotropic hardening is the fact that the yield surface expands
uniformly in all directions with plastic flow [34].

Three-point bending tests were performed for all the 3D printed cellular structures
and the typical force-deflection behavior is illustrated in Figure 9. It can be observed that
the maximum force that was applied on the nylon structures was 181.4 N. The addition of
fiberglass increased the ultimate forces to 296.3 N and 442.1 N for the central fiberglass-
reinforced and fiberglass-reinforced composites in positions 2–4, respectively. Figure 10a–d
show the SEM images at different magnifications of the fracture surfaces of the samples
manufactured by the CFF 3D printing technique. Small interlaminar cracks appeared
within the 3D printed layers as well as on the interface of the glass fiber when subjected to
bending loads, which was attributed to poor bonding of the fibers with the nylon matrix.
At higher magnifications, this is illustrated more clearly as the fibers appear to feature
negligible bonding on their perimeter with the nylon matrix.
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Figure 9. (a) Force-deflection curves of experimental and FEA for Nylon, Nylon FG central and
Nylon FG, top 2–4 positions; and (b) typical deformation (mm) response of the FE model under
three-point bending.
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Figure 10. SEM images of the glass fiber distribution at different magnifications showing (a) interlam-
inar crack propagation between the 3D printed layers, (b) crack propagation on the interface of glass
fibers and nylon matrix, (c) debonded glass fibers from the nylon matrix and (d) high magnification
of the interfacially debonded fibers.

In order to validate the FEA model, the FEA results were compared with the ex-
perimental flexural tests. Figure 9a also presents the level of convergence between the
experimental and the FEA results. From Figure 9a, the results are very encouraging as for
the same experimental deflections, the respective ultimate forces were at 181.4 N, 296.3 N
and 442.1 N for the nylon, central fiberglass-reinforced and fiberglass-reinforced fibers
in positions 2–4, respectively. In addition, it is evident that for the fiberglass-reinforced
specimens, the results from the experiments and the FEA were very close. On the other
hand, the results (FEA and experimental) for the nylon specimen seemed to suggest a
slightly larger deviation. This phenomenon may have occurred due to the fact that the
proposed methodology of simulating 3D printed fiber-reinforced specimens can make it
possible to simulate the behavior of these specimens in great detail by dividing them into
separate parts and considering them perfectly bonded in ANSYS. To sum up, from Figure 9,
there is strong evidence that the Finite Element Analysis Model is able to offer reliable
results, as the pairs of force-deflection that were recorded both in the experiment and in
the simulation were very close to each other.

Figure 11 illustrates the FEM-determined stress-strain behavior of the Nylon, Nylon
FG central, and Nylon FG 2–4 positions, in which higher yielding was observed for the
Nylon FG’s top 2–4 positions. Considering these results, it can be concluded that the
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glass fibers significantly affected the honeycomb’s mechanical properties and their overall
stress-strain behavior. Furthermore, the position of the glass fibers in the nylon honeycomb
structure also improved the stress-strain behavior when compared with the reference the
nylon structure. The maximum flexural stress (ultimate) of the nylon structures was calcu-
lated to be 45.56 MPa. Considering the reinforced structures, the ultimate flexural stress of
Nylon FG central and Nylon FG 2–4 was calculated at 73.50 MPa and 109.67 MPa, respec-
tively. All these details are presented graphically in Figure 11. All the above information
were obtained by taking into consideration that the initial slope is where stress is directly
proportional to strain. The yield point of each structure was calculated by FEA-generated
stress-strain curves.
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Figure 11. FEM-determined stress-strain curves of Nylon, Nylon FG central and Nylon FG, top 2–4
positions.

Considering the results from the bending tests and the FEA simulations, it is crucial to
make a comparison between the different kinds of reinforcements that were studied. This
analysis will set the basis for further investigation in the fields of 3D printed continuous
fiber reinforcement. Figures 9 and 11 compare the nylon specimen with the two kinds of
fiber reinforcements that were studied.

It is clear from Figure 12 that fiberglass reinforcement ameliorated the bending behav-
ior of the studied honeycomb structure. In terms of the flexural strength (Figure 12a), the
Nylon/GF Central specimens demonstrated a 61% increase (±7.5 MPa) compared to the
nylon specimens, while the Nylon/GF 2–4 presented an increase of 141% (±10 MPa). Con-
sidering the flexural modulus (Figure 12b), the Nylon/GF Central specimens demonstrated
a 166% increase (±200 MPa) compared to the nylon specimens, while the Nylon/GF 2–4
presented an increase of 432% (±300 MPa). The flexural stiffness is a criterion of measuring
deformability. The flexural stiffness of a structure is a function based upon two essential
properties: the elastic modulus, E (stress per unit strain) of the material that composes it,
and the moment of inertia, I, a function of the cross-sectional geometry. The flexural stiff-
ness in this paper is defined as the ratio between the applied force and the corresponding
displacement. In terms of flexural stiffness (Figure 12c), the Nylon/GF Central specimens
demonstrated an 84% increase (±7.4 MPa) compared to the nylon specimens, while the
Nylon/GF 2-4 presented an increase of 243% (±9 MPa). However, it seemed that central
fiberglass reinforcement presented less improvement. This was an expected observation,
since it is logical to notice better bending behavior as the strong material is placed near the
top and bottom bending surfaces. Finally, it is clear that FEA models provide extremely
reliable results.
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4. Conclusions

The main objective of this paper was to study the mechanical properties of 3D printed
fiber reinforced honeycomb structures. The fiber reinforcement was 3D printed inside
a honeycomb structure at predetermined regions using a CFF 3D printer (Markforged
Mark Two™). Stiff honeycomb cores were fabricated to compete with the mechanical
properties of the stiff fiber panels in sandwich structures. The mechanical behavior of the
composite nylon/fiberglass filaments was examined with SEM and nanoindentation testing.
A Finite Element Analysis model was developed to simulate the 3D printed fiber reinforced
honeycomb structures. It is evident that 3D printed-continuous fiberglass reinforcement
significantly ameliorates the behavior of the studied honeycomb structure. The significance
and potential applications of this work include the possibility of replacing lightweight
honeycomb cores with stiffer (fiber-reinforced) cores, which was proven in this study to be
a very promising approach.
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