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Abstract: The main goal of building composite materials and structures is to provide appropriate a
priori controlled physico-chemical properties. For this purpose, a strengthening is introduced that can
bear loads higher than those borne by isotropic materials, improve creep resistance, etc. Composite
materials can be designed in a different fashion to meet specific properties requirements.Nevertheless,
it is necessary to be careful about the orientation, placement and sizes of different types of reinforce-
ment. These issues should be solved by optimization, which, however, requires the construction
of appropriate models. In the present paper we intend to discuss formulations of kinematic and
constitutive relations and the possible application of homogenization methods. Then, 2D relations for
multilayered composite plates and cylindrical shells are derived with the use of the Euler–Lagrange
equations, through the application of the symbolic package Mathematica. The introduced form of the
First-Ply-Failure criteria demonstrates the non-uniqueness in solutions and complications in search-
ing for the global macroscopic optimal solutions. The information presented to readers is enriched
by adding selected review papers, surveys and monographs in the area of composite structures.

Keywords: homogenization; constitutive relations; kinematical relations; equations of motion; static
equilibrium relations; rectangular plates; circular cylindrical shells

1. Introduction—General Characteristics and Applications of Composite Materials
(CM)

The idea of composite materials arose from the need to combine different materials
in order to overcome the shortcomings of each one of them. In this way, the properties
of the composites are better than the properties of the phases that form them. One of the
phases (materials) is called the matrix, and the other, reinforcing the composite, is called
reinforcement.

The progress that has been made in the development of CM and its impact on civ-
ilization transformations is fast and unusual [1]. It mainly results from the numerous
advantages of these materials, the most important of which are: (a) low specific weight
ρ, (b) high resistance of CM with a polymer or ceramic matrix for corrosion, (c) low ther-
mal conductivity; this value is much lower than for steel, (d) ceramic CM resistance to
temperature; their mechanical properties do not change even at 2000 ◦C, (e) good CM
resistance with a polymer matrix for cracking; using the critical stress factor Kc as a mea-
sure, this resistance is comparable to the resistance of medium carbon steels and Al alloys,
and when evaluated by comparing the critical rate of Gc release rate, the fracture toughness
corresponds to that of soft steels or Ti alloys; in the case of ceramic matrix composites,
the above coefficients are much lower, (f) high CM resistance with polymer matrix for local
damage; steel structures are very sensitive to local damage, e.g., poor weld performance,
(g) technological ease of manufacturing objects (constructions) with complex shapes in
single operations, (h) composites are in principle a composition of all types of materials,
e.g., a combination of materials, one of which has piezo-electric properties; the other,
electro-luminescent, provides a composite with piezo-luminescent properties, shining
under the action of an applied force.
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Unfortunately, in addition to many advantages, CM also have disadvantages, of which
the most important is their price. They are, namely: (a) scatter of properties caused by the
lack of repeatability of the technological cycles; this results in the need to introduce large
safety factors, (b) problems related to the utilization of products made of composites.

Recently, the use of composites in aviation, space, defense and car industries has signif-
icantly increased due to their low specific gravity, high rigidity and durability. For example,
in the V-22 “Osprey” military rotor, the weight fraction of composites reaches 50%. Com-
posites are increasingly replacing and displacing steel in the construction of ships and tanks
in a rail transport. The introduction of CM popularized and democratized many branches
of sport and recreation (skiing, sailing, fishing, gliding), and even caused the emergence
of new types (windsurfing, hang gliding). We also observe the influence of materials on
sports results; the use of composites resulted in a world record in pole vaulting by more
than a meter. The use of ceramic composites in gas turbines has a major impact on energy
savings. The efficiency of the turbines increases as the combustion temperature increases.
A broad review of possible applications of CM in engineering problems is discussed by
Muc [1].

The organization of the present paper is the following. In the first part I intend to
emphasize the necessity of the use of composite materials, which is obvious. The second
section presents the necessity of optimization in the area of composite materials and
constructions. The third part of the work shows that different approaches may lead to
different solutions. Finally, I add information about the existing works in this area in
order to demonstrate the varietyof possible approachesand to help the readers to find the
appropriate method of analysis.

The aim of the present paper is very general. I intend to demonstrate that:

• The physical relations can be built separatelyas a description of the state of deformation
(Section 3), taking also into account homogenization problems (Section 4).

• The formulation of the relation strain-deformation (displacements) is completely
independent on the physical relations.

• The optimization problems can be formulated and solved at the macroscale level of
formulations, and the sense of approximations used in the physical relations and the
strain displacement relations can be verified only by the comparison with experimental
results or other numerical solutions.

2. Material Selection vs. Material Design—The Necessity of Optimization

Up until the end of the 20th century, human needs have been met by designing and
producing constructions for which different materials have been selected. In this way,
the basic emphasis was placed on the optimal shaping of constructional features, such as
shape, dimensions and weight, assuming a priori that material properties were strictly
defined or could be selected within a strictly defined scope. This tendency is clearly
outlined in Ashby’s monograph [2].

Nowadays, however, the development of materials science and materials engineering
indicates a different direction of material engineering activities (see, e.g., Rühle et al. [3]),
called material design. This term means the adaptation of materials from the chemical
composition, component phases and nano- microstructure to the properties required for
their application. In the not too distant future, traditional, empirical methods of introducing
new materials will be more and more supplemented with theoretical predictions.

Differences in the concepts of material design and material selection are shown in
Figure 1. In the case of material selection, the construction plays a superior role in relation
to the material (arrow direction), because the construction is based on an existing material
or group of materials. In the second case (material design), the situation is reversed.
The overriding issue is the material that we design properly from scratch. The relationship
with the structure is that we demand the fulfillment of specific functional properties by the
material. However, they are specific only for a single structure. For another construction,
we can design a completely different material.
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Figure 1. Concepts of materials selection and design.

Usually, we intend to allow the pressure vessel to carry high pressures, and we also
require it to be light (easy to transport). In the era of the existence of isotropic materials,
the constructors encountered a barrier of material properties. For a given geometry of the
pressure vessel (length, diameter), the value of the pressure transferred and the thickness
of the vessel were related to the boiler codes with allowable strength (material property).
For the highest possible strength (limited group of materials), the increase in pressure is
always associated with the increase in the thickness of the tank (increase in weight). In the
material design situation, it is possible to demand the increase of the allowable strength by
designing a completely new fibrous CM (designing yet non-existent fibers, special finishing
and matrix) and in this way increase the transferred pressure with a low weight of the
structure. Currently, thanks to CM, very light pressure vessels are created for pressures of
several hundred atmospheres. However, it is necessary to clearly distinguish the material
design for specific structures from the continuously growing set of materials available for
selection. Ashby [2] gives the example of a vacuum cleaner whose weight and price have
been significantly reduced compared to the initial situation with the aid of the discovery of
polymers.

In the case of material design, its structure and properties (physicochemical, nuclear,
electrical, mechanical, technological, etc.) have a great influence not only on the type
of structure (beam, plate, coating, load method, boundary conditions), but also on the
technological process (Figure 1).

Figure 1 demonstrates that in order to design materials for a particular structure, it is
necessary to analyze the mutual dependencies existing between the four main components:
construction-technology-structure-material.

Modern methods of design or material selection are using optimization methods to an
increasing extent. This is due, on the one hand, to the increasing number of components
(criteria) necessary to take into account to ensure the a priori imposed general and specific
requirements in the project under development and, on the other hand, to the development
and application possibilities of modern computer-aided design methods. The implemen-
tation of these concepts also triggers a greater attention to the issues of optimal design
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of technological processes used to produce a material that fulfills specific functions in a
specific construction (e.g., load transfer, deformation, stiffness, etc.). Usually, multi-criteria
optimization methods should be used in the selection or design of materials, first of all
in order to maintain an appropriate compromise between the components presented in
Figure 1.

In the case of modern materials, including composite materials, the problem of ma-
terial design is associated with the need to go down to a lower level of description of
interactions, understood as the transition from the macro state to the meso and micro-to-
nano-structures (scale of atomic interactions) in order to obtain appropriate (consistent
with the results of experiments) structural responses of the system on a macro scale. In the
case of fibrous composite materials, experimental investigations significantly exceed the
theoretical modeling of their properties, mainly due to the complexity of processes occur-
ring at the interface between the fiber and the matrix (local non-linear effects). Due to the
complexity of the physical and chemical effects, the development of microcracks and the
variability of the reinforcement cross-sections, we notice in the experimental evaluation of
the mechanical properties a significant scatter of the results in relation to the average value.
This leads directly to the need to consider not only purely deterministic approaches in the
description of mechanical properties and the optimization of structures made of composite
materials, but also the technological processes of their implementation. The above difficul-
ties lead to the use, in relation to the description and analysis of mechanical properties of
structures made of fibrous CM (microcomposites), of the homogenization method. There is
a rich, long-term documentation in the global literature demonstrating the advisability of
applying such an assumption in both scientific and engineering practice.

Currently, as in the past, the process of optimal design is an interdisciplinary activity
and can still be described by the triangle proposed by Eschenauer [4] (Figure 2). However,
it should be clearly emphasized that the problem of the optimization of composite structures
and their production processes is an area even younger than the mechanics of composites.
In addition, there are many new problems in this area of optimization, completely different
from the tasks of optimizing structures made of isotropic materials.
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Due to the above facts, the majority of problems to be solved concern fundamental
issues, i.e.,:

- modeling the optimization problem by taking into account (usually the simplest)
models of failure of structures and models of technological processes,

- attempts to take into account statistical distributions of experimental results-statistical
approach, anti-optimization, fuzzy set theory,
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- selection of appropriate design variables and definitions of design spaceespecially
appropriate for introducing various constraints in the form of equality or inequality,

- choosing the right optimization algorithm, which becomes extremely important in the
case of many design variables, the existence of many local extremes of the objective
function and the lack of convexity for many optimization problems,

- the necessity to search for solutions based on numerical methods (e.g., finite element
method, finite volume method), which results mainly from the lack of analytical
solutions for optimization tasks in the field of composite mechanics—see the quotation
from Tsai, Hahn [5]:

It is unfortunate that the use of composite materials is limited or penalized by the
nonavailability of analytical tools. It is important to understand how anisotropy
and nonhomogenity arise in composite laminates and to what degree they can be
manipulated to perform functions not possible with conventional materials.

The concept of topological optimization includes a full set of design variables that
combine dimension, shape, topological and material-related design variables. However,
the above generalization should not be confused with a strictly understood definition of
topology (see, e.g., [6,7]), but understood strictly in light of the theory of optimization of
topological variables.

In the optimization of composite materials or constructions made of composite ma-
terials, the layout optimization of composite structures is the most adequate, instead of
topological optimization. This is due to the fact that topological optimization is mainly
associated only with the term of material homogenization (see [6]). In my opinion, the most
reasonable approach seems to be the use of the definition: the optimization of the structure
of composite materials with the simultaneous distinction of the level of analysis (the length
scale), i.e.,it is possible to optimize at a specific level (see Figure 3):

• Microscale (fiber/inclusion, interpose, matrix)-Elementary cell
• Mesoscale (tow, ply-individual layer, woven/braided unit cell, laminate)
• Macroscale–Construction (homogenized material element)

This is necessary because on each of the above-mentioned levels of analysis CM intro-
duce different types of design variables, including both the geometry and the type of rein-
forcement, matrix and interfacial layer or the orientation of individual layers, the individual
thickness of individual layers and their material properties. The set of design variables
describing the structure of CM is an arrangement of geometrical and physical variables
that characterize (at a given level of analysis) unambiguously the physical properties of
CM. The next difference between the definitions proposed in this work and the Bendsøe
approach [6,7] lies in the possibility of describing the structure by other design variables
than those that characterize the problem’s physics, namely dimensional and shape opti-
mization variables describing the geometry of the problem. In this sense, we use two types
of design variables:

• physical (material), representing the CM from which the structure is made;
• geometric, characterizing the geometry of the structure.
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3. Basic Definitions and Notations

The problems discussed in the paper concern micro-composites, i.e., composite mate-
rials with a reinforcement embedded in a polymeric resin.

The structural analysis of elements composed of composite materials is based on the
theory of anisotropic elasticity. For a linear anisotropic material, the generalized Hooke’s
law relates the stress σi and the strain tensor εj [5]:

σi = Cijεj, i,j = 1, 2, ..., 6 (1)

or, in the inverse form:
εi = Sijσj, i,j = 1, 2, ..., 6 (2)

where: Cij are components of the stiffness matrix (Sij—the compliance or flexibility matrix).
The relations are written in the simplified, contracted single-subscript notation for the
stress and strain components and a double-subscript notation for the elastic constraints
(so-called Kelvin-Voigt’s notation) [5]. They are introduced in an orthogonal system of
coordinates (Figure 4).

σ1 = σ11, σ2 = σ22, σ3 = σ33,
σ4 = σ23, σ5 = σ13, σ6 = σ12
ε1 = ε11, ε2 = ε22, ε3 = ε33,

ε4 = 2ε23, ε5 = 2ε13, ε6 = 2ε12

(3)
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Due to the assumed symmetry of the stress and the strain tensors, the number of the
independent non-zero material coefficients in the stiffness matrix Cij is equal to 36. A further
reduction in the number of their values is possible if additional physical and material
assumptions are introduced into our analysis. The values of the material coefficients
depend on the reference coordinate system, since in the general tensor notation the material
coefficient matrix is a fourth-order tensor, and, therefore, their coefficients follow tensor
transformation rules. Now, let us assume that the constitutive relations (1) are formulated
in the local (material) Cartesian coordinate system.

For composite materials having an elastic potential function and three symmetry
planes that are mutually orthogonal in the material system of coordinates, the stiffness
matrix has the following structure-Vinson [8]:

[C] =



C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

 (4)

where:

C11 = ∆E1(1− ν23ν32), C22 = ∆E2(1− ν31ν13),C33 = ∆E3(1− ν21ν12),
C12 = ∆E1(ν12 + ν13ν32) = ∆E2(ν21 + ν23ν31), C13 = ∆E1(ν13 + ν12ν23) = ∆E3(ν31 + ν32ν21),
C23 = ∆E2(ν23 + ν21ν13) = ∆E3(ν32 + ν31ν12), C44 = G23 , C55 = G13 , C66 = G12,
∆ = 1/(1− ν12ν21 − ν13ν31 − ν23ν32 − 2ν21ν13ν32)

(5)

Such a material is called an orthotropic material (the shortening of orthogonal anisotropy).
In this case the number of independent material parameters is reduced to nine engineering
constants (E1, E2, E3, G12, G13, G23, ν12, ν13, ν23). The above form of the stiffness matrix
can be easily adopted not only for the analysis of laminated multilayered materials but
also for the investigation of structures made of porous functionally-graded materials [9]
or nanostructures embedded in a matrix [10]. The identical formulation can also be easily
extended to the problems of structural deformations of constructions with piezoelectric
sensors/actuators [11,12]. However, in the latter case, the stiffness matrix (1) or (4) is also
extended by adding the Maxwell relations.

4. Homogenization of Mechanical Properties

Polymer composites reinforced with unidirectional fibers (1D composites) or textile
composites (2D or 3D fiber structures) are heterogeneous (inhomogeneous) materials,
since they are made of two or more constituents with different physicochemical properties.
A microscopically inhomogeneous composite material can be idealized as a macroscopically
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homogeneous continuum when the behavior of engineering structures made of the material
can be satisfactorily retained. Such idealization can be realized over a representative sample
of the composite material. The selection of the dimensions of a representative volume is
imperative. The representative volume must be sufficiently large compared to the scale of
the microstructure, so that it contains a sufficient number of individual constituents (see,
e.g., Neto et al. [13,14]). In addition, it should be entirely typical of the whole composite
structure on average (see, e.g., Figure 5). It is assumed that the representative volume
contains all microstructural features, i.e.,:

• a set of mechanical parameters describing the mechanical properties of constituents,
• geometrical parameters characterizing the dimensions of a reinforcement and its

location in a representative cell,
• a position of a representative cell in a global coordinate system; it may be expressed

by Euler’s angles in three dimensions or by an angle θ in two dimensions.
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For structural scales larger than the representative volume element, continuum me-
chanics can be used to reproduce the properties of the material as a whole for structural
analysis and design without considering the microstructure of the material. Thus, in the
macroscopic scale, the microscopically inhomogeneous material can be treated as a ho-
mogeneous one, i.e., it is assumed that at each point of the structural body its effective,
averaged properties are identical.

For a representative volumetric element subject to an imposed macroscopically ho-
mogeneous stress or displacement field and no body forces, the average stress and strain
components are defined as ([15–18]):

〈σl〉 =
1
V

∫
V

σi

(
xloc
)

dυ,〈εi〉 =
1
V

∫
V

εi

(
xloc
)

dυ (6)

where V denotes a volume of the representative cell, and xloc denotes the vector of co-
ordinates in the local system of the cell. The effective properties are defined in terms
of the relations between the average stresses and average strains over a representative
volume [15–18]:

〈σi〉 = Cij
〈
ε j
〉
, i, j = 1, . . . , 6 (7)

In most structural applications, the structural elements are simplified material models
by reducing the general anisotropic stiffness matrix to a simpler form, e.g., to the model of
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the orthotropic body (Equation (4)). However, the exploitation of the orthotropic model
directly in relation (7) isand should be treated only as a hypothesis. The effective properties
produced by employing Equation (7) and any simplified model of an anisotropic body
always require an experimental verification of results, since the selected assumptions
carried out on the stage of Equation (7) may not allow the consideration of certain material
characteristics.

For an assumed material model of a two-phase composite, it is possible to evaluate
the effective properties with the use of the inverse method by the determination of the
concentration matrices in different phases. In the Suquet [15] method, the average strains
in each phase are uniquely dependent on the average strains in the representative volume
cell:

ε
f
i

(
xloc
)
= A f

ij

[
U
(

xloc
)]〈

ε j
〉
, εm

i

(
xloc
)
= Am

ij

[
U
(

xloc
)]〈

ε j
〉

(8a)

where: A f
ij

[
U
(

xloc
)]

, Am
ij

[
U
(

xloc
)]

are referred to as concentration matrices for the fibers
and the matrix, respectively; and U is a displacement vector in a local (cell) coordinate
system. By assuming that the following physical relationship is valid in the local coordinate
system:

σi

(
xloc
)
= Cij

(
xloc
)

ε j

(
xloc
)

(8b)

and using the definition of concentration matrices (8a), the following relation holds:

〈σi〉 =
(〈

C f
ij

(
xloc
)

A f
jk

(
xloc
)〉

+
〈

Cm
ij

(
xloc
)

Am
jk

(
xloc
)〉)
〈εk〉 (8c)

Comparing the above equation with Equation (7), the following expression can be
obtained:

Cik = C f
ij

(
xloc
)〈

A f
jk

(
xloc
)〉

+ Cm
ij

(
xloc
)〈

Am
jk

(
xloc
)〉

(8d)

which describes the overall material stiffness matrix. The effective material stiffness matrix
of the two-phase composite material is symmetric.

A macroscopically homogenized composite material can be introduced (defined) at
different levels of the analysis, i.e.,: (i) a laminate or (ii) an individual layer (a lamina).
Therefore, the following principle is fundamental in optimization problems considered in
this area (see Sections 7 and 8):

A laminate (a lamina) is treated as a material continuum, i.e., there are no disconti-
nuities between material phases or individual layers, air bubbles in a polymeric matrix,
micro-cracks, etc.

We will find this formalism (commonly called macro-mechanics) useful later in the
analysis, when dealing with optimization problems. However, the material modeling
of composites refers directly to the total number of independent engineering constants
describing mechanical properties. Note also that the number of independent engineering
constants is connected with the correct description of structural behavior. On the other
hand, it may complicate an optimization problem, especially as the number of constants
increases.

In composite material research and technology, a proper characterization of a represen-
tative cell, whether with regard to chemical, physical or mechanical properties, is extremely
important because it may be the origin of various errors. The prediction of the effective
properties for a unit cell proved, and remains, a great challenge. For instance,Figure 6
demonstrates an example of three-dimensional composites where a careful examination of
the symmetries of the problem is required.
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Figure 6. Examples of 3D composites.

First of all, it is necessary to decide whether to formulate the homogenization prob-
lem as a two-dimensional or three-dimensional problem. Figure 7 presents a typical
two-dimensional woven composite, whose thickness is small compared with the other
dimensions of a unit cell. However, the experiments [19,20] clearly show that variations
of weft and warp yarns can be successfully expressed with the use of one coordinate only,
but the stiffness matrix has to take at least a two-dimensional form.
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The selection of an appropriate homogenization model for heterogeneous composites
is based primarily not only on a large number of simplified assumptions dealing with the
definition of a unit cell (as described previously), but also on types of prescribed kinemati-
cal and static hypotheses characterizing structural deformations. This means simply that
the material macro-mechanical model cannot be separated from the structural behavior.
They must be compatible in the sense of an accurate formulation of structural deforma-
tions. Furthermore, mechanical modeling structure elements composed of fiber-reinforced
composites cover both homogenization models and structural models, particularly for
composite beams, plates and shells.

To present some of the basic concepts and ideas used in optimization problems,
we chose to divide all models (presented in the previous sentence) into four categories, i.e.,:

• a plane, orthotropic, two-dimensional (2D) category,
• a plane, orthotropic, two-dimensional (2D) category, taking into account transverse

shear effects—the stiffness matrix in the form given by Equation (4), eliminating the
third row and column in the matrix,

• combined two- and three-dimensional approaches,
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• a three-dimensional (3D) approach used in local formulations of plate and shell
theories (layerwise theories).

In the structural analysis of constructions composed of fiber-reinforced plastics,
we usually employ the approaches numbered as 1 and 2, and those problems will be
thoroughly discussed in the text.It is also worth emphasizing that in formulations 2-4 a set
of additional assumptions is required—they deal mainly with the form of transverse shear
stress distributions (so-called statical hypotheses)

For composite materials reinforced with particles and fibers, a broad review of used
material models is discussed in monographs [15,17–22].

4.1. Three-Dimensional (3D) Models

In the numerical-based 3D material models, effective properties are evaluated with
the use of finite element methods (FEM). They take into account features of the microstruc-
ture, such as the fiber architecture. An example of such a model is shown in Figure 8
(Muc [16]). 1/8 of the cylinder (the fibrous reinforcement) embedded in the polymeric
matrix constitutes the representative cell. To the representative volume, the prescribed
homogeneous displacement-based boundary conditions are imposed (iso-strain method).
Usually, the finite element mesh is composed of one to two thousand solid elements. Hence,
it is possible to evaluate stress and strain distributions and study the mechanical properties
of the assembled composite structure.

J. Compos. Sci. 2021, 5, x FOR PEER REVIEW 11 of 27 
 

 

simply that the material macro-mechanical model cannot be separated from the struc-

tural behavior. They must be compatible in the sense of an accurate formulation of 

structural deformations. Furthermore, mechanical modeling structure elements com-

posed of fiber-reinforced composites cover both homogenization models and structural 

models, particularly for composite beams, plates and shells. 

To present some of the basic concepts and ideas used in optimization problems, we 

chose to divide all models (presented in the previous sentence) into four categories, i.e.,: 

 a plane, orthotropic, two-dimensional (2D) category, 

 a plane, orthotropic, two-dimensional (2D) category, taking into account transverse 

shear effects—the stiffness matrix in the form given by Equation (4), eliminating the 

third row and column in the matrix, 

 combined two- and three-dimensional approaches, 

 a three-dimensional (3D) approach used in local formulations of plate and shell 

theories (layerwise theories). 

In the structural analysis of constructions composed of fiber-reinforced plastics, we 

usually employ the approaches numbered as 1 and 2, and those problems will be thor-

oughly discussed in the text.It is also worth emphasizing that in formulations 2-4 a set of 

additional assumptions is required—they deal mainly with the form of transverse shear 

stress distributions (so-called statical hypotheses) 

For composite materials reinforced with particles and fibers, a broad review of used 

material models is discussed in monographs [15,17–22]. 

4.1. Three-Dimensional (3D) Models 

In the numerical-based 3D material models, effective properties are evaluated with 

the use of finite element methods (FEM). They take into account features of the micro-

structure, such as the fiber architecture. An example of such a model is shown in Figure 8 

(Muc [16]). 1/8 of the cylinder (the fibrous reinforcement) embedded in the polymeric 

matrix constitutes the representative cell. To the representative volume, the prescribed 

homogeneous displacement-based boundary conditions are imposed (iso-strain method). 

Usually, the finite element mesh is composed of one to two thousand solid elements. 

Hence, it is possible to evaluate stress and strain distributions and study the mechanical 

properties of the assembled composite structure. 

Various aspects of the application of finite element methods in the homogenization 

theory are presented, e.g., by Bourget [23] and Guedes, Kikuchi [24]. 

 

Figure 8. 3D numerical model of the unit cell. Figure 8. 3D numerical model of the unit cell.

Various aspects of the application of finite element methods in the homogenization
theory are presented, e.g., by Bourget [23] and Guedes, Kikuchi [24].

4.2. Two-Dimensional (2D) Models

The macro-mechanical modeling and analysis of a lamina is based on the plane stress
assumption. For plies, the elastic behavior is macroscopically quasi-homogeneous and
orthotropic, with four independent material parameters: E1, E2, G12, ν12. The elastic
behavior of a lamina depends on the reference system. The above-mentioned material
constants and strain-stress relations are introduced in the material (local) orthogonal
coordinate system where the reference axes (x1, x2) are parallel and transverse to the fiber
direction (Figure 9)—the so-called on-axis case.
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Figure 9. The simplified assumptions used in the analysis of in-plane stress problems for a lamina in the local (material)
coordinate system (for laminates, the global coordinate system is rotated around the axis x3).

Using the in-plane stress assumption, it has to be borne in mind that some serious
inaccuracies in the mechanical response of a lamina can occur, since the transverse shear
stress components are equated to zero, i.e.:

σ33= σ13= σ23 = 0. (9)

For plane stress problems, the transverse shear normal strain component ε33(ε3) can
be derived from the condition σ33 = 0, namely:

ε3 = −(C31ε1 + C32ε2 + C36ε6)/C33 (10)

and finally the stiffness matrix [C] (4) is reduced to the simplified form [5,8]:

{σ} = [Q]{ε},


σ1
σ2
σ6

 =

 Q11 Q12 0
Q12 Q22 0

0 0 Q66


ε1
ε2
ε6

, Qij = Cij − Ci3Cj3/C33 (11)

Qij (i,j = 1, 2, 6) are stiffnesses reduced to the plane of an individual lamina and are
numbered by superscripts in order to distinguish them in a laminate—for instance, the
symbol Q(k)

ij refers to the k-th layer. They are expressed by engineering constants in the
following way:

Q11 =
E1

1− ν12ν21
,Q12 =

ν12E2

1− ν12ν21
,Q22 =

E2

1− ν12ν21
, Q66 = G12 (12)

The above stress-stress relations of a lamina are modified in order to take into account
thermal, hygrothermal or transverse shear effects. Now, we discuss problems connected
with transverse shear deformations of a lamina, since hygrothermal problems will be
presented later. In the transverse direction, perpendicular to the material plane (x1, x2), a
lamina stiffness (strength) is very low, and out-of-plane loading is carried out by a very
weak polymeric matrix. To include those effects in the analysis, the stress-strain relations in
the k-th layer have to be described with the use of a larger number of engineering constants
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than previously. This may be done by introducing two additional Kirchhoff’s moduli, G13
and G23. Finally, the stresses in the k-th layer are expressed as follows:

σ1
σ2
σ4
σ5
σ6

 =


Q11 Q12 0 0 0
Q12 Q22 0 0 0

0 0 Q44 0 0
0 0 0 Q55 0
0 0 0 0 Q66




ε1
ε2
ε4
ε5
ε6

,Q44 = G23, Q55 = G13 (13)

For thick laminates, as the thickening of a laminate cannot be neglected (e.g.,hygrothermal
effects), the transverse shear normal stress component σ33 cannot be identically equal to
zero, and it yields that the full (6 × 6) stiffness matrix given by Equation (4) has to be used
in the analysis.

The relations (11)–(13) are given in the local material reference system. Now we
consider the ply material axes to be rotated away from the global axes by an angle θ,
positive in the counterclockwise direction. Using the classical transformation rules for
tensors in the global reference system, the components of the stiffness matrix (13) take the
following form [8]:

Q11 = Q11 cos4 θ + 2(Q12 + 2Q66) sin2 θ cos2 θ + Q22 sin4 θ,
Q12 = Q12 cos4 θ + (Q11 + Q22 − 4Q66) sin2 θ cos2 θ + Q12 sin4 θ,
Q22 = Q22 cos4 θ + 2(Q12 + 2Q66) sin2 θ cos2 θ + Q11 sin4 θ,
Q16 = (Q11 −Q12 − 2Q66) sin θ cos3 θ + (Q12 −Q22 + 2Q66) sin3 θ cos θ,
Q26 = (Q11 −Q12 − 2Q66) sin3 θ cos θ + (Q12 −Q22 + 2Q66) sin θ cos3 θ,
Q66 = Q66 cos4 θ + 2(Q11 + Q22 − 2Q12 − 2Q66) sin2 θ cos2 θ + Q66 sin4 θ,
Q44 = Q44 cos2 θ + Q55 sin2 θ, Q55 = Q55 cos2 θ + Q44 sin2 θ ,
Q45 = (Q55 −Q44) sin θ cos θ

(14)

By defining certain functions that are independent of θ, the components of the
[¯

Q
]

matrix can be rewritten as:

Q11 = U1 + U2 cos 2θ + U3 cos 4θ,
Q22 = U1 −U2 cos 2θ + U3 cos 4θ,
Q12 = U4 −U3 cos 4θ,
Q66 = U5 −U3 cos 4θ,
Q16 = 1

2 U2 sin 2θ + U3 sin 4θ,
Q26 = 1

2 U2 sin 2θ −U3 sin 4θ,
Q44 = U7 −U6 cos 2θ, Q45 = U6 sin 2θ,
Q55 = U7 + U6 cos 2θ

(15)

where:
U1 = 1

8 (3Q11 + 3Q22 + 2Q12 + 4Q66), U2 = 1
2 (Q11 −Q22 ),

U3 = 1
8 (Q11 + Q22 − 2Q12 − 4Q66),

U4 = 1
8 (Q11 + Q22 + 6Q12 − 4Q66),

U5 = 1
2 (U1 −U4),U6 = 1

2 (Q55 −Q44),
U7 = 1

2 (Q44 + Q55)

(16)

4.3. Effective Stiffnesses of Laminates in the 2D Approach

Having formulated the constitutive relations for a lamina composed of a generally
orthotropic material, the next step is to derive the constitutive relations accruing from
bonding several laminae together. Consider a laminate (hybrid) made of N individual plies.
In the global reference system, each layer of a laminate can be identified by its material, its
location in the laminate (the integral number k, k = 1, 2, ... N), its thickness tk = zk – zk−1,
and its fiber orientation θk (Figure 10).
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Figure 10. Cross-section of the laminate.

In the global reference system (x, y, z), the extensional [A], coupling [B], bending [D]
and higher order [H] stiffness matrices are defined in the following way:

Aij =

t/2∫
−t/2

Q(k)
ij dz =

N

∑
k=1

Q(k)
ij tk, (17)

Bij =

t/2∫
−t/2

Q(k)
ij zdz =

1
2

N

∑
k=1

Q(k)
ij (z2

k − z2
k−1) (18)

Dij =

t/2∫
−t/2

Q(k)
ij z2dz =

1
3

N

∑
k=1

Q(k)
ij (z3

k − z3
k−1) (19)

Hij =

t/2∫
−t/2

Q(k)
ij z3dz =

1
4

N

∑
k=1

Q(k)
ij (z4

k − z4
k−1) (20)

As may be seen in the relations (17)–(20), there are symbols indexed by the number of
an individual layer (k). They are obtained from Equations (15) by adding the appropriate
index to the lamination parameters U1, ..., U7 (it is assumed that the material properties of
each layer may be different—a hybrid structure), as well as to a fiber orientation θ in a ply.
If the material properties of each lamina are identical, then the relations (17)–(20) can be
rewritten in the uniform simplified form. Let us introduce the following notation:

V{A,B,D,H}
(1,2,3,4,5) =

N

∑
k=1

[
(1, cos 2θk, cos 4θk, sin 2θk, sin 4θk)

{
zk − zk−1,

z2
k − z2

k−1
2

,
z3

k − z3
k−1

3
,

z4
k − z4

k−1
4

}]
(21)

The above relation presents 20 quantities in the compact form.Each of them can be
obtained by the multiplication of the terms in round and curly brackets. For instance,
the quantity V{B}

(3) is the result of the multiplication of the third term in the round bracket

(cos4θk) by the second term in the curly bracket (
(

z2
k − z2

k−1

)
/2) and the summing of all

the layers in the laminate. Finally, an arbitrary non-zero component of stiffness matrices
(17)–(20) can be expressed with the use of Table 1 and Equation (21).
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Table 1. Components of the stiffness matrix.

V{X}
(1) V{X}

(2) V{X}
(3) V{X}

(4) V{X}
(5)

X11 U1 U2 U3 — —

X12 U4 — –U3 — —

X16 — — — U2/2 U3

X22 U1 –U2 U3 — —

X26 — — — U2/2 –U3

X44 U7 –U6 — — —

X45 — — — U6 —

X55 U7 U6 — — —

X66 U5 — –U3 — —

X denotes A or B or D or H.

For plane stress problems, variations of the strain components (ε1, ε2, ε6) with respect
to the z coordinate are prescribed in advance. However, the distributions of the ε4 and ε5
strains with the z variable cannot be assumed in an arbitrary way, since they have to satisfy
the 3D equilibrium equations for stress components. In the 2D approach it is possible to
satisfy the 3D equilibrium equations in an approximate manner only—a so-called statical
hypothesis. This may be done by assuming a specific form of constitutive relations for the
resultant transverse shear forces and the resultant transverse strain components.For the
first-order transverse shear deformation theory (FSDT) in a global reference system, they
take the following form:{

Qy
Qx

}
=

[
k2

2 A44 (k1k2)A45
(k1k2)A45 k2

1 A55

]{
ε4
ε5

}
=

[
A44 A45
A45 A55

]{
ε4
ε5

}
(22)

where k1 and k2 are transverse shear coefficients. The components of the stiffness matrices
can take different values depending on the values of the transverse shear coefficients, and
those definitions are different.Vinson [8] proposed to assume the continuous variation of
the strain components ε4 and ε5 through the laminate thickness in the form of a parabolic
function f (z). In this way the stiffness matrix components for the FSDT can be derived in a
similar manner as for the 2D plane problem (Equations (17)–(20)), i.e., by the integration
over the total laminate thickness:

Aij =

t/2∫
−t/2

dz f (z)Qij, f (z) = 5
4

[
1−

(
z

t/2

)2
]

, i, j = 4, 5 (23)

As may be noticed, the two-dimensional macro-mechanical description of laminates
is based on two assumptions:

• in a lamina, the properties of the fibers and the matrix are smearedout in an equivalent
homogeneous material with orthotropic behavior,

• the distributions of strains over the total laminate thickness are prescribed in advance,
and they have to vary continuously through the total thickness.

In fact, the first one is directly connected with a homogenization theory, whereas
the second one constitutes the other form of hypotheses, commonly called kinematical
hypotheses. They will be discussed in the next section. For laminates, however, both
assumptions have influence on the form of stiffness matrix components. 2D formulations
are not sufficient in many problems dealing with composite structural behavior and opti-
mization problems (e.g., delaminations). For such problems, additional assumptions are
required to build an appropriate 2D formalism or to use 3D physical relations. Now for an
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analysis of stress/strain/deformation distributions, the latter approach is typical in the
available commercial FE packages.

5. Strain-Displacement Plate/Shell 2D Relations

In the mechanics of deformable bodies a shell is treated as a three-dimensional body
whose metric and shape is identified with a metric and shape of a two-dimensional surface
called a reference surface (a mid-surface). The global orthogonal curvilinear coordinate
system (the Gaussian system—x, y, z) is placed at the shell’s mid-surface, where the z
coordinate is normal to the reference surface (Figure 11). From a geometrical point of view,
plate theory is a borderline case among shell equations, as the Gaussian curvatures of the
shell’s mid-surface are identically equal to zero.
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A broad discussion of various formulations and hypotheses used in the description
of multilayered composite shells is presented by Kleiber, Woźniak [25] and Muc [26].
We now focus our attention on the presentation of fundamental assumptions important in
optimization problems for plated and shell structures.

An arbitrary point of a shell is determined by a triad of coordinates (x, y, z) in a
global curvilinear coordinate system placed at a shell’s mid-surface (z = 0). Assuming
that displacements are small comparing to the shell’s thickness, all strain-displacement
relations are linear and given by Kleiber, Wożniak [25] and Muc [26]:

ε11 = 1
H1

(
∂Ũ1
∂x + 1

H2

∂H1
∂y Ũ2 +

1
H3

∂H1
∂z Ũ3

)
,

ε12 = H2
H1

∂
∂x

(
Ũ2
H2

)
+ H1

H2
∂

∂y

(
Ũ1
H1

)
,

Hγ = Aγ(1 + z
Rγ

), H3 = 1, γ = 1, 2;

(24)

In the above equation, the indices 1, 2, 3 obey to the cyclic permutation rule; it is also
valid for the change of coordinates, where 1 corresponds to the x coordinate, 2 to y and
3 to z; for circular cylindrical shells, it is also assumed that H2 ≈ A2, as this term is not
differentiated in the relations (24).The 3D displacement vector can be expanded with respect
to the z variable (z = 0 corresponds to the position at the mid-surface) in the power series,
Tschebyshev series, Legendre polynomials or Laguerre polynomials (Muc [26]). The order
of expansion can be arbitrary, butthe order of expansion of the normal displacement Ũ3
must be lower than that of the two other displacement components, Ũ1, Ũ2, to satisfy the
classical compatibility equations.
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If a kinematical model of shell deformations is based on the first order transverse shear
shell deformation theory (FSDT), a three-dimensional displacement vector is represented
in the following form:

Ũ1(x, y, z) = u(x, y) + zψ1(x, y),
Ũ2(x, y, z) = v(x, y) + zψ2(x, y),

Ũ3(x, y, z) = w(x, y),
(25)

where: u, v and w are the displacement components of the shell’s mid-surface, and ψ1 and
ψ2 are the rotations of the transverse normals referred to the plane (z = 0)—five independent
unknown functions. If the straight lines normal to the mid-surface remain straight and
normal to that surface after the deformations (the Love–Kirchhoff hypothesis), then the
transverse shear strains ε4 and ε5 become negligible, which implies that the rotations of the
transverse normals can be expressed in the following way:

ψ1(x, y) =
u

R1
− 1

A1

∂w
∂x

, ψ2(x, y) = v
R2
− 1

A2
∂w
∂y (26)

We hereby obtain the classical Love–Kirchhoff theory (L–K). Thus, in the classical
L–K shell theory, the deformations of the shell mid-surface are characterized by three
independent parameters (unknown functions). R1 and R2 denote the radii of the curvatures
at the x and y directions, respectively, and A1 and A2 are the Lame parameters,

Using Equations (25) or (26), the total strains at arbitrary distance z of the mid-surface
are given by:

εij(x, y, z) =ij (x, y) + zκij(x, y),
εi3(x, y, z) =i3 (x, y), i, j = 1, 2

(27)

where the components are membrane (mid-surface) strains, and κ are the curvature
quantities.

6. Equations of Motion and Static Equilibrium for Composite Structures
6.1. Equations of Motion

For 3D composite structures, let us consider the following functional:

H =

τ2∫
τ1

(K−Π)dΩdτ = 0 (28)

where: K denotes the total kinetic energy, Π is the total potential energy and τmeans the
physical time. The total kinetic energy can be written in the following form:

K =
1
2

∫
Ω

ρ(z)
dŨi
dτ

dŨi
dτ

dΩ (29)

and the total potential energy is defined as follows:

Π(Ũi) =
∫

Ω
WdΩ−

∫
ST

TiŨidS = Πint −
∫

ST

TiŨidS (30)

Where: W is the potential of internal forces (the strain energy density function):

W =
1
2

σαβεαβ =
1
2
(σ11ε11 + σ22ε22 + σ33ε33) + σ12ε12 + σ13ε13 + σ23ε23 (31)

Ω defines the volume occupied by the deformable body. Ti is the component of the
surface forces in the global reference system. ST is the portion of the surface on which
surface forces T are specified. For laminated beams, plates or shells, it is assumed that
external loadings are applied on the mid-surface of the structures. Ũi(x, y, z) denotes the
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components of the 3D displacement vector defined in a global orthogonal reference system.
ρ(z) is the density of a multilayered laminate and can vary with the thickness (z) coordinate:

ρ(z) =
N

∑
j=1

ρj
[
1
(
z− zj

)
− 1
(
z− zj+1

)]
(32)

1( . . . ) is Heaviside’s function.
According to the classical macro-mechanical approach for composite structures (the

homogenization of ply properties), each component of the functional in Equation (31) is
evaluated as the sum of contributions from individual layers. Thus, the laminate strain
energy can be expressed in the following way:

Πint =
N

∑
j=1

Π(j)
int =

N

∑
j=1

zj∫
zj−1

x

SΩ

W(j)A1 A2dxdydz (33)

For beams, plates or shells, the volume element dΩ is represented as: A1A2dxdydz.
For structures considered in the work, the Lame’s parameters take the following form: for
plates A1 = A2 = 1, and for circular cylindrical shells A1 = 1 and A2 = R. Using the assumed
distributions of displacements Ũi(x, y, z) (e.g., in the form of Equations (25)) and densities
(32) along the thickness direction z, employing physical relations (1) and the general form of
strain-displacements relations (24), it is possible to integrate the functional (28) with respect
to the z variable. Finally, the functional H is a function of the functions u(x,y), v(x,y), w(x,y),
ψ1(x,y) and ψ2(x,y) and of stiffnesses (17)–(20), characterizing laminate configurations.
The derivation of the fundamental set of differential equations can be carried out with the
use of the symbolic package Mathematica—one command only.

6.2. Static Equilibrium Equations

Finally, for static problems settingthe kinetic energy in Equation (28), we obtain
the functional dependent on: the kinematical parameters (functions) characterizing shell
deformations at the mid-surface (u, v, w, ψ1, ψ2), the Lame parameters A1 and A2 and
external loadings. The examples of those mathematical operations are demonstrated by
Muc [26] both for geometrically linear and nonlinear strain-displacement relations.

6.3. Multi-Layered Plates

By setting both Lame parameters to one and carrying out the variations of the func-
tional (30) with respect to the kinematical variables (u, v, w, ψ1, ψ2), the equilibrium
equations (FSDT) of a laminated multilayered orthotropic plate subjected to an external
uniform normal pressure p can be found.

∂x
[
A11∂xu + A12∂yv + A16

(
∂yu + ∂xv

)
+ B11∂xψ1 + B12∂yψ2 + B16

(
∂yψ1 + ∂xψ2

)]
+

∂y
[
A16∂xu + A26∂yv + A66

(
∂yu + ∂xv

)
+ B16∂xψ1 + B26∂yψ2 + B66

(
∂yψ1 + ∂xψ2

)]
= 0,

∂x
[
A16∂xu + A26∂yv + A66

(
∂yu + ∂xv

)
+ B16∂xψ1 + B26∂yψ2 + B66

(
∂yψ1 + ∂xψ2

)]
+

∂y
[
A11∂xu + A12∂yv + A16

(
∂yu + ∂xv

)
+ B11∂xψ1 + B12∂yψ2 + B16

(
∂yψ1 + ∂xψ2

)]
= 0,

∂x
[
A45
(
∂yw + ψ2

)
+ A55(∂xw + ψ1)

]
+ ∂y

[
A44
(
∂yw + ψ2

)
+ A45(∂xw + ψ1)

]
+ p = 0,

∂x
[
B11∂xu + B12∂yv + B16(∂yu + ∂xv) + D11∂xψ1 + D12∂yψ2 + D16(∂yψ1 + ∂xψ2)

]
+

∂y
[
B16∂xu + B26∂yv + B66(∂yu + ∂xv) + D16∂xψ1 + D26∂yψ2 + D66(∂yψ1 + ∂xψ2)

]
−[

A45
(
∂yw + ψ2

)
+ A55(∂xw + ψ1)

]
= 0,

∂x
[
B16∂xu + B26∂yv + B66

(
∂yu + ∂xv

)
+ D16∂xψ1 + D26∂yψ2 + D66

(
∂yψ1 + ∂xψ2

)]
+

∂y
[
B12∂xu + B22∂yv + B26

(
∂yu + ∂xv

)
+ D12∂xψ1 + D22∂yψ2 + D26

(
∂yψ1 + ∂xψ2

)]
−[

A44
(
∂yw + ψ2

)
+ A45(∂xw + ψ1)

]
= 0

(34)

where the stiffness coefficients A44, A45, A55 can be derived both from Equations (22)
or (23).
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A solution of equilibrium equations (34) can be found in an analytical way, as for
isotropic plates, using the classical Navier method or the Airy stress functions. For more
complicated boundary or loading conditions, solutions can be obtained with the help of
the commercial FE packages.

6.4. Multi-Layered Circular Cylindrical Shells

Using the first-order shear deformation theory in the global approach and the Euler-
Lagrange variational principle, we derive the system of equilibrium equations describing
the linear deformations of a circular cylindrical shell. It is assumed that the shell is subjected
to a radial pressure p(x,ζ), where x and ζ denote the curvilinear orthogonal coordinates of
the shell’s mid-surface. After the rearrangements, one can obtain the system of equations
in terms of displacements and rotations (u, v, w, ψ1, ψ2):

Lijrj = pi(i, j = 1, 2, . . . , 5) (35)

where the linear differential operators are defined in the following way:

L11 = A11
∂2

∂x2 + 2A16
1
R

∂2

∂θ∂x + A66
1

R2
∂2

∂θ2 ,
L12 = A16

∂2

∂x2 + (A12 + A66)
1
R

∂2

∂θ∂x + A26
1

R2
∂2

∂θ2 ,
L13 = B11

∂2

∂x2 + 2B16
1
R

∂2

∂θ∂x + B66
1

R2
∂2

∂θ2 ,
L14 = B16

∂2

∂x2 + (B12 + B66)
1
R

∂2

∂θ∂x + B26
1

R2
∂2

∂θ2 ,
L15 = A12

1
R

∂
∂x + A26

1
R2

∂
∂θ ,

L22 = A66
∂2

∂x2 + 2A26
1
R

∂2

∂x∂θ + A22
1

R2
∂2

∂θ2 − A44
1

R2 ,
L23 = B16

∂2

∂x2 + (B12 + B66)
1
R

∂2

∂x∂θ + B26
1

R2
∂2

∂θ2 + A45
1
R ,

L24 = B66
∂2

∂x2 + 2B26
1
R

∂2

∂x∂θ + B22
1

R2
∂2

∂θ2 + A44
1
R ,

L25 = (A12 + A55)
1
R

∂
∂x + (A26 + A45)

1
R2

∂
∂θ ,

L32 = L23 − A45
1

R2 ,
L33 = D11

∂2

∂x2 + 2D16
1
R

∂2

∂x∂θ + D66
1

R2
∂2

∂θ2 − A55,
L34 = D16

∂2

∂x2 + (D12 + D66)
1
R

∂2

∂x∂θ + D26
1

R2
∂2

∂θ2 − A45,
L35 = ( B12

R − A55)
∂

∂x + ( B26
R − A45)

1
R

∂
∂θ ,

L44 = D66
∂2

∂x2 + 2D26
1
R

∂2

∂x∂θ + D22
1

R2
∂2

∂θ2 − A44,
L45 = ( B26

R − A45)
∂

∂x + ( B22
R − A44)

1
R

∂
∂θ ,

L51 = −L15 , L52 = −L25 , L53 = −L35 , L54 = −L45 ,
L55 = A55

∂2

∂x2 + 2A45
1
R

∂2

∂x∂θ − A22
1

R2

(36)

[r]Tr = [u, v, ψ1, ψ2, w] , [p]Tr = [0, 0, 0, 0,−p(x, θ)] (37)

Note that not all operators are given in the explicit form in Equations (36), since
some of them are symmetric with respect to the subscripts, i.e., Lij = Lji. The further
simplifications of the equations are possible for a specified laminate configuration (both for
plates and shells).

Now, let us consider a particular form of Equations (36) in the case of: (i) axial-
symmetric deformations, (ii) an external loading in the form of axial forces N0 and a radial
normal pressure (they are independent on the longitudinal coordinate x), (iii) a laminate
configuration for which [B] ≡ 0 and the stiffness matrix components ( )16 = ( )26 ≡ 0.
The last assumption results in the elimination of the term A45 ≡ 0. Finally, the equilibrium
equations can be expressed in the following form:

du
dx = 1

A11

(
N0 − A12

w
R
)
,

d4w
dx4 − η2 d2w

dx2 + ε4w = 1
D11

(
p− N0

A12
RA11

) (38)
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where:
η2 =

A
R2 A11 A55

, ε4 = A
R2 A11D11

, A = A11 A22 − A2
12 (39)

By inserting A55= ∞ in Equation (39), the equilibrium equations (38) can be easily
transformed to the system of equations valid for the classical Love–Kirchhoff theory. It
is worth noticing that the form of equilibrium equations, both for the FSDT theory and
the L–K theory, is identical to that for isotropic axially-symmetrical shells (Flügge [27]
for the L–K theory). However, for laminated shells, the coefficients in Equations (38) are
dependent on a laminate configuration, which may significantly affect the maximum values
of buckling or failure (maximum stresses or strains) loads and change a maximal carrying
capacity of laminated structures.

For an arbitrary laminate configuration, there is no point in searching for solutions
of equilibrium equations given in the general form, (35)–(37), with the use of analytical
methods, e.g., an expansion in double Fourier series. Using the Fourier series even for
the simplest boundary conditions (e.g., simply-supported b.c.), it is impossible to separate
terms corresponding to longitudinal x and circumferential θ variables due to the existence
in Equations (35)–(37) of non-zero terms V{...}

(4,5). This complicates the classical optimization
analysis significantly, and the correct and accurate evaluation of the objective functions can
only be carried out with the help of the FE packages.

7. First-Ply-Failure Criteria of Laminae (FPF)

For composite structural elements, failure criteria are in fact an extension and adapta-
tion of existing concepts in the mechanics of isotropic bodies (the failure procedures for
metallic structures are well established), i.e., the appropriate criteria can be introduced in a
linear (maximum stress or strain criteria) or a quadratic form. However, they are mainly
based on experimental results for various composites (they are purely empirical), so that
there are a lot of different criteria. The major difference between isotropic materials and
unidirectional fibrous composite materials is the directional dependence of the strength
on a macroscopic scale. All failure theories have a limited area of applications due to a
variety of composite materials, their failure mechanisms and different behaviors under
combined loading (an interaction of stress components). Failure criteria for composites are
formulated both in the stress or the strain space. In general, they have to be consistent with
rules of mechanics and principles of mathematics.

Laminate failure criteria are applied on a ply-to-ply basis, and the load-carrying
capability of the entire composite is predicted by the laminate theories. A laminate may
be assumed to have failed when the strength/strain criterion of any one of its laminae is
reached (first-ply-failure). Failure criteria have been established in the case of a layer in its
local material coordinate system.

Of all failure criteria available, the following three are considered representative and
more widely used in engineering practice and design codes:

(i) maximum strain theory,
(ii) maximum stress theory,
(iii) quadratic (interactive) in the stress space.

Failure criteria are always formulated in the material local coordinate system (on-axis).
For composite structures, stress and strain components are evaluated in a global reference
system (off-axis), and those values have to be transformed to the on-axis system using
classical transformation rules for tensors.

The form of the first two is analogous to that of isotropic structures. They assume no
stress/strain interaction. Failure occurs when at least one strain/stress component along
one of the principal material axes exceeds the corresponding strain/strength parameter in
that direction. In the maximum strain theory the strains are limited in the following way:

ε1 > ε
dop
1t , − ε1 > ε

dop
1c , ε2 > ε

dop
2t , − ε2 > ε

dop
2c , |ε6| > ε

dop
s (40)
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where as for the maximum stress theory the failure criteria can be written as follows:

σ1 > Xt, –σ1 > Xc, σ2 > Yt , –σ2 > Yc , |σ6| >S (41)

The ultimate strains are evaluated in the following way (or can be measured):

ε
dop
1t = Xt/E1, ε

dop
1c = Xc/E1, ε

dop
2t = Yt/E2, ε

dop
2c = Yc/E2, ε

dop
s = S/E6 (42)

where:
Xt longitudinal tensile strength along the fiber direction x1,
Xc longitudinal compressive strength along the fiber direction x1,
Yt transverse tensile strength perpendicular to the fiber direction x2,
Yc transverse compressive strength perpendicular to the fiber direction x2,
S shear strength in the plane (x1, x2).
In both cases, there are six possible failure modes associated with the sign of stress/strain

components for the analyzed plane stress problems. However, the symmetry of shear
strength absolute values is expected. Note that due to the non-zero values of Poisson’s
ratio, failure modes, failure envelopes and failure loads are different for the maximum
strength and strain failure theories.

Quadratic (interactive) failure criteria can be expressed in a general form in the on-axis
system as follows:

Fxxσ2
1 + 2Fxyσ1σ2 + Fyyσ2

2 + Fssσ2
6 + Fxσ1 + Fyσ2 = 1 (43)

For composite materials, a failure envelope represents an ellipsoid elongated along
one of its axes. Its shape is dependent on the values of material constants denoted as the
symbol F with subscripts. The form of the material parameters uniquely defines the form
of the quadratic criterion.

As the most well-known and most often practically used criteria, one can mention the
following:

the Tsai–Wu criterion (interactive tensor polynomial criterion) [28], where:

Fxx = 1
XtXc

, Fyy = 1
YtYc

, Fss =
1

S2 ,
Fx = 1

Xt
− 1

Xc
, Fy = 1

Yt
− 1

Yc
, Fxy = − 1

2
√

FxxFyy,
(44)

the Hoffman criterion [29], where:

Fxx = 1
XtXc

, Fyy = 1
YtYc

, Fss =
1

S2 ,
Fx = 1

Xt
− 1

Xc
, Fy = 1

Yt
− 1

Yc
, Fxy = − 1

XtXc
,

(45)

the Puck criterion [30], where:

Fxx = 1
XtXc

, Fyy = 1
YtYc

, Fss =
1

S2 ,
Fx = 1

Xt
− 1

Xc
, Fy = 1

Yt
− 1

Yc
, Fxy = 0,

σ1 ≤ Xt , −σ1 ≥ Xc ,
(46)

the Tsai–Hill criterion [31] (deviatoric or distortion strain energy criterion), where:

Fxx =
1

X2
U

, Fyy =
1

Y2
U

, Fss =
1
S2 , Fx = 0, Fy = 0, Fxy = −1

2
Fxx. (47)

For the Tsai–Hill criterion, the subscript U is replaced by the symbols t or c depending
on the sign of the stresses.

The quadratic failure criteria do not take into account linear terms σ6, because if shear
stress is reversed the strength remains the same.
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The lamina fails if one of the above criteria is violated. However, the criterion does
not give information about how much load can be increased if the lamina is safe or how
much it can be decreased if the lamina has failed. We can increase the information given by
failure criteria if we use a different variable, which is called the quadratic strength ratio RB.
It is defined as the ratio of the maximum (ultimate) load that can be applied {σ}max to the
value of the load applied {σ}appl:

{σ}max = RB{σ}appl (48)

When the allowable stress is reached for the k-th lamina in a laminate (first-ply-failure),
then RB=1. If RB > 1.The lamina is safe and the applied load can be increased. RB cannot
be less than a unity which has no physical reality.

For linear elastic deformations inserting the relation (48) into Equation (43):

(RB)2(Fxxσ2
1 + 2Fxyσ1σ2 + Fyyσ2

2 + Fssσ2
6 ) + RB(Fxσ1 + Fyσ2)− 1 = 0 (49)

For isotropic structures, the strength ratio RB is equivalent to a safety factor. The
solution of Equation (46) can be easily found (it must be positive):

RB =
−H ±

√
H2 + 4G

2G
(50)

where:
G = Fxxσ2

1 + 2Fxyσ1σ2 + Fyyσ2
2 + Fssσ2

6 , H = Fxσ1 + Fyσ2 (51)

We will illustrate the meaning of the strength ratios with a simple example. Figure 12
represents the first-ply-failure envelopes in the strain space for different fiber orientations.
Note that the strength ratios in the stress space and in the strain space are the same because
the failure criterion is identical. Comparing between the different layers (Figure 12),
whichever layer has the lowest strength ratio would be the first layer to fail, as the load is
increasing. Let us analyze a tensile test of a composite structure composed of unidirectional
layers oriented at 0◦, 45◦ and 90◦. The strength (strain) ratio corresponds to the ratio of the
length of the arrow measured to the nearest failure envelope (90◦) to the length of the line
segment measured from the beginning of the arrow indicating the origin of the coordinate
system. Of course, since the ratio is less than one, the laminate is unsafe and layers oriented
at 90◦ will fail for the assumed loading condition. It is worth adding that the value of the
strength (strain) ratio is dependent on the form of the loading trajectories.

Although a variety of optimization algorithms exists [32,33] even for rectangular plates,
the maximization of FPF loads is not a simple task, due to the complexity of fundamental
Equations (34) and non-uniqueness of optimal solutions for different failure criteria (40),
(41) or (42). Therefore, the analysis is usually reduced to computations based on the use of
the maximum strain theory (40) and the analysis of discrete plate configurations [34–36].
For multilayered laminated shells, the analysis of FPF is much more complicated than for
plates (see, e.g., the examples discussed in Ref [37]).

For plates and shells with holes, the numerical analysis as well as the experimental
data clearly demonstrate that the FPF criteria for notched specimens can be characterized
with the use of various functions (see, e.g., Shah et al. [38]). It seems to be much more
reasonable to introduce different criteria than classical FPF functions. The objective of the
optimization problem can be formulated as the MinMax problem, i.e., to minimize the
maximum strain energy density function W (31) along the hole border ∂Ωh. The solutions
of such optimization problems are discussed in Refs [39–41] for plates and in Ref [42] for
cylindrical shells.
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8. Analysis of Macroscopic (Global) Failure Modes of Composite Structures

The first-ply-failure is one of possible failure global criteria of composite structures.
Now, we intend to present criteriaother than FPF that are commonly discussed in the
literature.

1. Global buckling analysis (Ref [43]),
2. Interlaminar failure-delamination phenomenon associated with the local buckling of

sublaminates [44–46],
3. Fatigue problems of structures with a singular notch [47,48],
4. Free vibrations and flutter problems of plates and cylindrical shells [49–51].

In the cited papers readers can find a lot of references dealing with the method of
analysis but also with the solutions of various optimization problems.

9. Concluding Remarks

In the present paper, the attention is mainly focused on the description of homoge-
nization problems, the derivation of the fundamental relations with the aid of the Euler–
Lagrange method and the formulation of the first-ply-failure criteria in order to emphasize
the influence of the above-mentioned problems on the optimal design of composite materi-
als and structures. In general, my aim was not to solve particular problems but to point
out the variety of problems encountered in the design of engineering composite structures.
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