Role of Hybrid Nano-Zinc Oxide and Cellulose Nanocrystals on the Mechanical, Thermal, and Flammability Properties of Poly (Lactic Acid) Polymer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis Procedure of Zinc Oxide Nanoparticles
2.3. Masterbatch Preparation
2.4. Nanocomposite Samples Preparation
2.5. Scanning Electron Microscopy (SEM)
2.6. Transmission Electron Microscopy (TEM)
2.7. Dynamic Mechanical Analysis (DMA)
2.8. Fourier-Transform Infrared Spectroscopy (FTIR)
2.9. Thermogravimetric Analyses (TGA)
2.10. Melt Flow Index
2.11. Horizontal Burn Test
3. Results and Discussion
3.1. Transmission Electron Microscopy (TEM)
3.2. Fourier-Transform Infrared Spectroscopy (FTIR)
3.3. Dynamic Mechanical Analysis (DMA)
3.4. Scanning Electron Microscopy (SEM)
3.5. Thermogravimetric Analyses (TGA)
3.6. Melt Flow Index (MFI)
3.7. Horizontal Burn Test
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Khoo, R.Z.; Ismail, H.; Chow, W.S. Thermal and Morphological Properties of Poly (Lactic Acid)/Nanocellulose Nanocomposites. Procedia Chem. 2016, 19, 788–794. [Google Scholar] [CrossRef] [Green Version]
- Luzi, F.; Fortunati, E.; Jiménez, A.; Puglia, D.; Chiralt, A.; Torre, L. PLA Nanocomposites Reinforced with Cellulose Nanocrystals from Posidonia Oceanica and ZnO Nanoparticles for Packaging Application. J. Renew. Mater. 2017, 5, 103–115. [Google Scholar] [CrossRef]
- Murariu, M.; Benali, S.; Raquez, J.-M.; Bonnaud, L.; Dubois, P. Current Progress in the Production of PLA-ZnO Nanocomposites: Beneficial effects of chain extender addition on key properties. J. Appl. Polym. Sci. 2015, 132. [Google Scholar] [CrossRef]
- Murariu, M.; Doumbia, A.; Bonnaud, L.; Dechief, A.-L.; Paint, Y.; Ferreira, M.; Campagne, C.; Devaux, E.; Dubois, P. High-Performance Polylactide/ZnO Nanocomposites Designed for Films and Fibers with Special End-Use Properties. Biomacromolecules 2011, 12, 1762–1771. [Google Scholar] [CrossRef] [PubMed]
- Ljungberg, N.; Wesslén, B. Preparation and Properties of Plasticized Poly (Lactic Acid) Films. Biomacromolecules 2005, 6, 1789–1796. [Google Scholar] [CrossRef]
- Oksman, K.; Aitomäki, Y.; Mathew, A.P.; Siqueira, G.; Zhou, Q.; Butylina, S.; Tanpichai, S.; Zhou, X.; Hooshmand, S. Review of the Recent Developments in Cellulose Nanocomposite Processing. Compos. Part A Appl. Sci. Manuf. 2016, 83, 2–18. [Google Scholar] [CrossRef] [Green Version]
- Salasińska, K.; Borucka, M.; Celiński, M.; Gajek, A.; Zatorski, W.; Mizera, K.; Leszczyńska, M.; Ryszkowska, J. Thermal Stability, Fire Behavior, and Fumes Emission of Polyethylene Nanocomposites with Halogen-Free Fire Retardants. Adv. Polym. Technol. 2018, 37, 2394–2410. [Google Scholar] [CrossRef]
- Abdalkarim, S.Y.H.; Yu, H.-Y.; Wang, C.; Yang, L.; Guan, Y.; Huang, L.; Yao, J. Sheet-like Cellulose Nanocrystal-ZnO Nanohybrids as Multifunctional Reinforcing Agents in Biopolyester Composite Nanofibers with Ultrahigh UV-Shielding and Antibacterial Performances. ACS Appl. Bio Mater. 2018, 1, 714–727. [Google Scholar] [CrossRef]
- Chung, Y.T.; Mahmoudi, E.; Mohammad, A.W.; Benamor, A.; Johnson, D.; Hilal, N. Development of Polysulfone-Nanohybrid Membranes Using ZnO-GO Composite for Enhanced Antifouling and Antibacterial Control. Desalination 2017, 402, 123–132. [Google Scholar] [CrossRef] [Green Version]
- Shojaeiarani, J.; Bajwa, D.; Jiang, L.; Liaw, J.; Hartman, K. Insight on the Influence of Nano Zinc Oxide on the Thermal, Dynamic Mechanical, and Flow Characteristics of Poly (Lactic Acid)–Zinc Oxide Composites. Polym. Eng. Sci. 2019, 59, 1242–1249. [Google Scholar] [CrossRef]
- Awan, F.; Islam, M.S.; Ma, Y.; Yang, C.; Shi, Z.; Berry, R.M.; Tam, K.C. Cellulose Nanocrystal–ZnO Nanohybrids for Controlling Photocatalytic Activity and UV Protection in Cosmetic Formulation. ACS Omega 2018, 3, 12403–12411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, H.-Y.; Chen, G.-Y.; Wang, Y.-B.; Yao, J.-M. A Facile One-Pot Route for Preparing Cellulose Nanocrystal/Zinc Oxide Nanohybrids with High Antibacterial and Photocatalytic Activity. Cellulose 2015, 22, 261–273. [Google Scholar] [CrossRef]
- Azizi, S.; Ahmad, M.B.; Ibrahim, N.A.; Hussein, M.Z.; Namvar, F. Cellulose Nanocrystals/ZnO as a Bifunctional Reinforcing Nanocomposite for Poly (Vinyl Alcohol)/Chitosan Blend Films: Fabrication, Characterization and Properties. Int. J. Mol. Sci. 2014, 15, 11040–11053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mariano, M.; El Kissi, N.; Dufresne, A. Cellulose Nanocrystals and Related Nanocomposites: Review of Some Properties and Challenges. J. Polym. Sci. Part B Polym. Phys. 2014, 52, 791–806. [Google Scholar] [CrossRef]
- Sullivan, E.M.; Moon, R.J.; Kalaitzidou, K. Processing and Characterization of Cellulose Nanocrystals/Polylactic Acid Nanocomposite Films. Materials 2015, 8, 8106–8116. [Google Scholar] [CrossRef] [Green Version]
- Carrasco, F.; Pagès, P.; Gámez-Pérez, J.; Santana, O.O.; Maspoch, M.L. Processing of Poly (Lactic Acid): Characterization of Chemical Structure, Thermal Stability and Mechanical Properties. Polym. Degrad. Stab. 2010, 95, 116–125. [Google Scholar] [CrossRef]
- Azizi, S.; Ahmad, M.; Mahdavi, M.; Abdolmohammadi, S. Preparation, Characterization, and Antimicrobial Activities of ZnO Nanoparticles/Cellulose Nanocrystal Nanocomposites. BioResources 2013, 8, 1841–1851. [Google Scholar] [CrossRef] [Green Version]
- Fallah, M.H.; Fallah, S.A.; Zanjanchi, M.A. Synthesis and Characterization of Nano-Sized Zinc Oxide Coating on Cellulosic Fibers: Photoactivity and Flame-Retardancy Study. Chin. J. Chem. 2011, 29, 1239–1245. [Google Scholar] [CrossRef]
- Cacciotti, I.; Fortunati, E.; Puglia, D.; Kenny, J.M.; Nanni, F. Effect of Silver Nanoparticles and Cellulose Nanocrystals on Electrospun Poly (Lactic) Acid Mats: Morphology, Thermal Properties and Mechanical Behavior. Carbohydr. Polym. 2014, 103, 22–31. [Google Scholar] [CrossRef] [Green Version]
- Fukushima, K.; Tabuani, D.; Camino, G. Poly (Lactic Acid)/Clay Nanocomposites: Effect of Nature and Content of Clay on Morphology, Thermal and Thermo-Mechanical Properties. Mater. Sci. Eng. C 2012, 32, 1790–1795. [Google Scholar] [CrossRef]
- Hamzah, M.S.; Mariatti, M.; Ismail, H. Melt Flow Index and Flammability of Alumina, Zinc Oxide and Organoclay Nanoparticles Filled Cross-Linked Polyethyelene Nanocomposites. Mater. Today Proc. 2019, 17, 798–802. [Google Scholar] [CrossRef]
- Lv, S.; Zhang, Y.; Tan, H. Thermal and Thermo-Oxidative Degradation Kinetics and Characteristics of Poly (Lactic Acid) and Its Composites. Waste Manag. 2019, 87, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Bajwa, D.S.; Rehovsky, C.; Shojaeiarani, J.; Stark, N.; Bajwa, S.; Dietenberger, M.A. Functionalized Cellulose Nanocrystals: A Potential Fire Retardant for Polymer Composites. Polymers 2019, 11, 1361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample | Masterbatch | Extruded Sheets | ||||
---|---|---|---|---|---|---|
PLA (%) | CNCs (%) | ZnO (%) | PLA (%) | CNCs (%) | ZnO (%) | |
PLA | 100 | 0 | 0 | 100 | 0 | 0 |
1.5CNC | 90 | 10 | 0 | 98.50 | 1.50 | 0 |
1.5ZnO | 90 | 0 | 10 | 98.50 | 0 | 1.50 |
1.5CNC/1.5ZnO | 80 | 10 | 10 | 97.00 | 1.50 | 1.50 |
1.5CNC/2.5ZnO | 85 | 5 | 10 | 96.00 | 1.5 | 2.50 |
Sample | Peak tanδ | Tg (°C) | Storage Modulus (MPa) | Loss Modulus (MPa) | ||
---|---|---|---|---|---|---|
35 °C | 70 °C | 35 °C | 70 °C | |||
PLA | 1. 8 ± 0.6 | 79.1 ± 2.75 | 2384.0 ± 214.0 | 13.3 ± 2.1 | 40.7 ± 0.5 | 481.7 ± 0.7 |
1.5CNC | 1. 5 ± 0.3 | 80.6 ± 4.8 | 2642.3 ± 562.1 | 17.6 ± 0.9 | 34.5 ± 1.2 | 23.6 ± 1.5 |
1.5ZnO | 1.6 ± 0.3 | 79.6 ± 6.1 | 2014.6 ± 458.7 | 9.3 ± 2.4 | 58.2 ± 1.6 | 210.8 ± 2.2 |
1.5CNC/1.5ZnO | 1.6 ± 0.3 | 79.0 ± 4.3 | 2226.3 ± 310.9 | 6.1 ± 2.5 | 33.3 ± 2.3 | 52.4 ± 2.7 |
1.5CNC/2.5ZnO | 1.7 ± 0.3 | 78.9 ± 5.5 | 1587.2 ± 332.5 | 5.7 ± 1.9 | 30.9 ± 2.1 | 144.6 ± 3.1 |
Sample | Tonset (°C) | T50 (°C) | Tendset (°C) |
---|---|---|---|
PLA | 310.6 ± 5.6 | 338.4 ± 4. 3 | 355.6 ± 5.4 |
1.5CNC | 315.7 ± 9.0 | 341.6 ± 5.6 | 358.7 ± 6.3 |
1.5ZnO | 202.6 ± 7.4 | 251.6 ± 6.3 | 279.1 ± 7.8 |
1.5CNC/1.5ZnO a * | 247.2 ± 6.4 | 284.6 ± 8.4 | 302.8 ± 7.4 |
1.5CNC/1.5ZnO b | 210.1 ± 8.2 | 275.1 ± 7.8 | 295.9 ± 8.1 |
1. 5CNC/2.5ZnO | 195.9 ± 8. 9 | 240.6 ± 9.2 | 264.3 ± 9.5 |
Sample | Mean Linear Burning Rate (mm/min) | Type of Burning | Mass Loss (%) |
---|---|---|---|
PLA | 25.42 | Continuous | 69.1 |
1.5CNC | 30.20 | Continuous | 9.2 |
1.5ZnO | - | Noncontinuous | 3.3 |
1.5CNC/1.5ZnO | - | Noncontinuous | 3.2 |
1.5CNC/2.5ZnO | - | Noncontinuous | 4.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bajwa, D.S.; Shojaeiarani, J.; Liaw, J.D.; Bajwa, S.G. Role of Hybrid Nano-Zinc Oxide and Cellulose Nanocrystals on the Mechanical, Thermal, and Flammability Properties of Poly (Lactic Acid) Polymer. J. Compos. Sci. 2021, 5, 43. https://doi.org/10.3390/jcs5020043
Bajwa DS, Shojaeiarani J, Liaw JD, Bajwa SG. Role of Hybrid Nano-Zinc Oxide and Cellulose Nanocrystals on the Mechanical, Thermal, and Flammability Properties of Poly (Lactic Acid) Polymer. Journal of Composites Science. 2021; 5(2):43. https://doi.org/10.3390/jcs5020043
Chicago/Turabian StyleBajwa, Dilpreet S., Jamileh Shojaeiarani, Joshua D. Liaw, and Sreekala G. Bajwa. 2021. "Role of Hybrid Nano-Zinc Oxide and Cellulose Nanocrystals on the Mechanical, Thermal, and Flammability Properties of Poly (Lactic Acid) Polymer" Journal of Composites Science 5, no. 2: 43. https://doi.org/10.3390/jcs5020043
APA StyleBajwa, D. S., Shojaeiarani, J., Liaw, J. D., & Bajwa, S. G. (2021). Role of Hybrid Nano-Zinc Oxide and Cellulose Nanocrystals on the Mechanical, Thermal, and Flammability Properties of Poly (Lactic Acid) Polymer. Journal of Composites Science, 5(2), 43. https://doi.org/10.3390/jcs5020043