Modeling and Simulations of the Sulfur Infiltration in Activated Carbon Fabrics during Composite Cathode Fabrication for Lithium-Sulfur Batteries
Abstract
:1. Introduction
2. Materials and Experimental Methods
3. Modeling of the Sulfur Infiltration in the Porous Cathode Host
- (a)
- hot-plate specified temperature: Tb;
- (b)
- pressure container wall from stainless steel (ρ = 8000 kg m−3; cp = 468 J kg−1 K−1; k = 16.3 W m−1 K−1) of thickness of 3 mm;
- (c)
- aluminium foil of wrap (ρ = 2725 kg m−3; cp = 910 J kg−1 K−1; k = 235 W m−1 K−1) of thickness of 30 µm;
- (d)
- aluminium foil of current collector (ρ = 2725 kg m−3; cp = 910 J kg−1 K−1; k = 235 W m−1 K−1) of thickness of 30 µm;
- (e)
- ACF (ρ = 240 kg m−3; specific heat capacity in J kg−1 K−1 as a function of absolute temperature T: cp = 0.0004T + 0.8133; k = 0.12 W m−1 K−1) of thickness of 500 µm;
- (f)
- ACF-sulfur composite consisting of ACF infiltrated with sulfur of varying thickness from 0 (non-infiltrated ACF) to 500 µm (fully infiltrated ACF);
- (g)
- sulfur layer of 12 mg cm−2, consisting of initially solid S8 allotrope (ρ = 2070 kg m−3; cp = 706 J kg−1 K−1; k = 0.205 W m−1 K−1) which when melt (ρ = 1819 kg m−3; cp = 975 J kg−1 K−1; k = 0.205 W m−1 K−1);
- (h)
- air layer (at temperature T (K) and pressure P (Pa): ρ T,P = 3.6 × 10−3 P/T in kg m−3; cp = 1010 J kg−1 K−1; k = 34 + 0.07(T − 273) in mW m−1 K−1) of thickness of 3 mm;
- (i)
- aluminium foil of wrap (ρ = 2725 kg m−3; cp = 910 J kg−1 K−1; k = 235 W m−1 K−1) of thickness of 30 µm;
- (j)
- air (at temperature T (K) and pressure P (Pa): ρ T,P = 3.6x10−3 P/T in kg m−3; cp = 1010 J kg−1 K−1; k = 34 + 0.07 (T − 273) in mW m−1 K−1) of thickness of 100 mm;
- (k)
- pressure container ceiling from stainless steel (ρ = 8000 kg m−3; cp = 468 J kg−1 K−1; k = 16.3 W m−1 K−1) of thickness of 3 mm.
165 °C ≤ T < 185 °C: μS,m = 0.035 Pa s
185 °C ≤ T < 195 °C: μS,m = 0.92 Pa s
195 °C ≤ T: μS,m = 0.85 Pa s
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhu, K.; Wang, C.; Chi, Z.; Ke, F.; Yang, Y.; Wang, A.; Wang, W.; Miao, L. How far away are lithium-sulfur batteries from commercialization? Front. Energy Res. 2019, 7, 123. [Google Scholar] [CrossRef]
- Reddy, M.V.; Mauger, A.; Julien, C.M.; Paolella, A.; Zaghib, K. Brief history of early lithium-battery development. Materials 2020, 13, 1884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reddy, M.V.; Subba Rao, G.V.; Chowdari, B.V.R. Metal oxides and oxysalts as anode materials for li ion batteries. Chem. Rev. 2013, 113, 5364–5457. [Google Scholar] [CrossRef] [PubMed]
- Petnikota, S.; Rotte, N.K.; Srikanth, V.V.S.S.; Kota, B.S.R.; Reddy, M.V.; Loh, K.P.; Chowdari, B.V.R. Electrochemical studies of few-layered graphene as an anode material for Li ion batteries. J. Solid State Electrochem. 2014, 18, 941–949. [Google Scholar] [CrossRef]
- Elazari, R.; Salitra, G.; Garsuch, A.; Panchenko, A.; Aurbach, D. Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries. Adv. Mater. 2011, 23, 5641–5644. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Lee, K.T.; Nazar, L.F. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 2009, 8, 500–506. [Google Scholar] [CrossRef]
- Xu, G.; Ding, B.; Nie, P.; Shen, L.; Dou, H.; Zhang, X. Hierarchically porous carbon encapsulating sulfur as a superior cathode material for high performance lithium−sulfur batteries. ACS Appl. Mater. Interfaces 2014, 6, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, D.-J.; Jung, H.-G.; Sun, Y.-K.; Hassoun, J.; Scrosati, B. An advanced lithium-sulfur battery. Adv. Funct. Mater. 2013, 23, 1076–1080. [Google Scholar] [CrossRef]
- Vijayan, B.L.; Misnon, I.I.; Kumar, G.M.A.; Miyajima, K.; Reddy, M.V.; Zaghib, K.; Karuppiah, C.; Yang, C.-C.; Jose, R. Facile fabrication of thin metal oxide films on porous carbon for high density charge storage. J. Colloid Interface Sci. 2020, 562, 567–577. [Google Scholar] [CrossRef]
- Vijayan, B.L.; Zain, N.K.M.; Misnon, I.I.; Reddy, M.V.; Adams, S.; Yang, C.-C.; Anilkumar, G.M.; Jose, R. Void space control in porous carbon for high-density supercapacitive charge storage. Energy Fuels 2020, 34, 5072–5083. [Google Scholar] [CrossRef]
- Ji, L.; Rao, M.; Zheng, H.; Zhang, L.; Li, Y.; Duan, W.; Guo, J.; Cairns, E.J.; Zhang, Y. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J. Am. Chem. Soc. 2011, 133, 18522–18525. [Google Scholar] [CrossRef]
- Reece, R.; Lekakou, C.; Smith, P.A.; Grilli, R.; Trapalis, C. Sulphur-linked graphitic and graphene oxide platelet-based electrodes for electrochemical double layer capacitors. J. Alloys Compd. 2019, 792, 582–593. [Google Scholar] [CrossRef]
- Di Lecce, D.; Marangon, V.; Du, W.; Brett, D.J.L.; Shearing, P.R.; Hassoun, J. The role of synthesis pathway on the microstructural characteristics of sulfur-carbon composites: X-ray imaging and electrochemistry in lithium battery. J. Power Source 2020, 472, 228424. [Google Scholar] [CrossRef]
- Markoulidis, F.; Todorova, N.; Grilli, R.; Lekakou, C.; Trapalis, C. Composite electrodes of activated carbon and multiwall carbon nanotubes decorated with silver nanoparticles for high power energy storage. J. Compos. Sci. 2019, 3, 97. [Google Scholar] [CrossRef] [Green Version]
- Markoulidis, F.; Lei, C.; Lekakou, C. Investigations of activated carbon fabric-based supercapacitors with different interlayers via experiments and modelling of electrochemical processes of different timescales. Electrochim. Acta 2017, 249, 122–134. [Google Scholar] [CrossRef]
- Lei, C.; Markoulidis, F.; Wilson, P.; Lekakou, C. Phenolic carbon cloth-based electric double-layer capacitors with conductive interlayers and graphene coating. J. Appl. Electrochem. 2016, 46, 251–258. [Google Scholar] [CrossRef] [Green Version]
- Lei, C.; Lekakou, C. Activated carbon–carbon nanotube nanocomposite coatings for supercapacitor application. Surf. Coat. Technol. 2013, 232, 326–330. [Google Scholar] [CrossRef]
- Vermisoglou, E.C.; Giannakopoulou, T.; Romanos, G.; Giannouri, M.; Boukos, N.; Lei, C.; Lekakou, C.; Trapalis, C. Effect of hydrothermal reaction time and alkaline conditions on the electrochemical properties of reduced graphene oxide. Appl. Surf. Sci. Part A 2015, 358, 100–109. [Google Scholar] [CrossRef]
- Vermisoglou, E.C.; Giannakopoulou, T.; Romanos, G.E.; Boukos, N.; Giannouri, M.; Lei, C.; Lekakou, C.; Trapalis, C. Non-activated high surface area expanded graphite oxide for supercapacitors. Appl. Surf. Sci. Part A 2015, 358, 110–121. [Google Scholar] [CrossRef]
- Todorova, N.; Giannakopoulou, T.; Boukos, N.; Vermisoglou, E.; Lekakou, C.; Trapalis, C. Self-propagating solar light reduction of graphite oxide in water. Appl. Surf. Sci. Part B 2017, 391, 601–608. [Google Scholar] [CrossRef]
- Vermisoglou, E.C.; Giannakopoulou, T.; Romanos, G.; Boukos, N.; Psycharis, V.; Lei, C.; Lekakou, C.; Petridis, D.; Trapalis, C. Graphene-based materials via benzidine-assisted exfoliation and reduction of graphite oxide and their electrochemical properties. Appl. Surf. Sci. 2017, 392, 244–255. [Google Scholar] [CrossRef]
- Markoulidis, F.; Lei, C.; Lekakou, C. Fabrication of high-performance supercapacitors based on transversely oriented carbon nanotubes. Appl. Phys. A Mater. Sci. Process. 2013, 111, 227–236. [Google Scholar] [CrossRef]
- Lekakou, C.; Moudam, O.; Markoulidis, F.; Andrews, T.; Watts, J.F.; Reed, G.T. Carbon-based fibrous EDLC capacitors and supercapacitors. J. Nanotechnol. 2011, 2011, 409382. [Google Scholar] [CrossRef] [Green Version]
- Markoulidis, F.; Bates, J.; Lekakou, C.; Slade, R.; Laudone, G.M. Supercapacitors with lithium-ion electrolyte: An experimental study and design of the activated carbon electrodes via modelling and simulations. Carbon 2020, 164, 422–434. [Google Scholar] [CrossRef]
- Fields, R.; Lei, C.; Markoulidis, F.; Lekakou, C. The Composite supercapacitor. Energy Technol. 2016, 4, 517–525. [Google Scholar] [CrossRef] [Green Version]
- Lei, C.; Fields, R.; Wilson, P.; Lekakou, C.; Amini, N.; Tennison, S.; Perry, J.; Gosso, M.; Martorana, B. Development and evaluation of a composite supercapacitor-based 12 V transient start-stop (TSS) power system for vehicles: Modelling, design and fabrication scaling up. Proc. Inst. Mech. Eng. Part A J. Power Energy 2020. [Google Scholar] [CrossRef]
- Vermisoglou, E.C.; Giannouri, M.; Todorova, N.; Giannakopoulou, T.; Lekakou, C.; Trapalis, C. Recycling of typical supercapacitor materials. Waste Manag. Res. 2016, 34, 337–344. [Google Scholar] [CrossRef] [Green Version]
- Kampouris, E.M.; Papaspyrides, C.D.; Lekakou, C.N. A model recovery process for scrap polystyrene foam by means of solvent systems. Conserv. Recycl. 1987, 10, 315–319. [Google Scholar] [CrossRef]
- Kampouris, E.M.; Papaspyrides, C.D.; Lekakou, C.N. A model process for the solvent recycling of polystyrene. Polym. Eng. Sci. 1988, 28, 534–537. [Google Scholar] [CrossRef]
- Murugesh, A.K.; Uthayanan, A.; Lekakou, C. Electrophoresis and orientation of multiple wall carbon nanotubes in polymer solution. Appl. Phys. A Mater. Sci. Process. 2010, 100, 135–144. [Google Scholar] [CrossRef]
- Bhargav, A.; He, J.; Gupta, A.; Manthiram, A. Lithium-sulfur batteries: Attaining the critical metrics. Joule 2020, 4, 285–291. [Google Scholar] [CrossRef]
- Borchardt, L.; Oschatz, M.; Kaskel, S. Carbon materials for lithium sulfur batteries—Ten critical questions. Chem. Eur. J. 2016, 22, 7324–7351. [Google Scholar] [CrossRef]
- Sofekun, G.O.; Evoy, E.; Lesage, K.L.; Chou, N.; Marriott, R.A. The rheology of liquid elemental sulfur across the λ-transition. J. Rheol. 2018, 62, 469–476. [Google Scholar] [CrossRef] [Green Version]
- Tucker, R.P. Notes on the sublimation of sulfur between 25° and 50 °C. Ind. Eng. Chem. 1929, 21, 44–47. [Google Scholar] [CrossRef]
- Carter, R.; Oakes, L.; Muralidharan, N.; Pint, C.L. Isothermal sulfur condensation into carbon scaffolds: Improved loading, performance, and scalability for lithium–sulfur battery cathodes. J. Phys. Chem. C 2017, 121, 7718–7727. [Google Scholar] [CrossRef]
- Meyer, B. Elemental sulfur. Chem. Rev. 1976, 76, 367–388. [Google Scholar] [CrossRef]
- Amico, S.; Lekakou, C. Flow through a two-scale porosity, oriented fibre porous medium. Transp. Porous Media 2004, 54, 35–53. [Google Scholar] [CrossRef]
- Boukhalfa, S.; Gordon, D.; He, L.; Melnichenko, Y.B.; Nitta, N.; Magasinski, A.; Yushin, G. In situ small angle neutron scattering revealing ion sorption in microporous carbon electrical double layer capacitors. ACS Nano 2014, 8, 2495–2503. [Google Scholar] [CrossRef] [PubMed]
- Jackson, A.J.; Tiana, D.; Walsh, A. A universal chemical potential for sulfur vapours. Chem. Sci. 2016, 7, 1082–1092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- West, E.D. The heat capacity of sulfur from 25 to 450°, the heats and temperatures of transition and fusion. J. Am. Chem. Soc. 1959, 81, 29–37. [Google Scholar] [CrossRef]
- Maruyama, S.; Aihara, T. Heat transfer from a layer of a carbon fiber cluster at low Reynolds numbers. Exp. Therm. Fluid Sci. 1994, 8, 128–134. [Google Scholar] [CrossRef]
- Khaliji Oskouei, M.; Tamainot-Telto, Z. Investigation of the heat transfer properties of granular activated carbon with R723 for adsorption refrigeration and heat pump. Therm. Sci. Eng. Prog. 2019, 12, 1–12. [Google Scholar] [CrossRef]
- Lee, D.-G.; Park, J.-H.; Lee, Y.-H.; Baeg, C.-Y.; Kim, H.-J. Natural convection heat transfer characteristics in a canister with horizontal installation of dual purpose cask for spent nuclear fuel. Nucl. Eng. Technol. 2013, 45, 969–978. [Google Scholar] [CrossRef] [Green Version]
- Smith, R.L. Predicting evaporation rates and times for spills of chemical mixtures. Ann. Occup. Hyg. 2001, 45, 437–445. [Google Scholar] [CrossRef]
- Guo, Z.; Roache, N.F. Overall mass transfer coefficient for pollutant emissions from small water pools under simulated indoor environmental conditions. Ann. Occup. Hyg. 2003, 47, 279–286. [Google Scholar]
- Dalin, G.A.; West, J.B. The viscosity of sulfur vapor. J. Phys. Chem. 1950, 54, 1215–1221. [Google Scholar] [CrossRef] [PubMed]
- West, W.A.; Menzies, A.W.C. The vapor pressures of sulfur between 100° and 550° with related thermal data. J. Phys. Chem. 1929, 33, 1880–1892. [Google Scholar] [CrossRef]
- Lekakou, C.; Edwards, S.; Bell, G.; Amico, S.C. Computer modelling for the prediction of the in-plane permeability of non-crimp stitch bonded fabrics. Compos. A Appl. Sci. Manuf. 2006, 37, 820–825. [Google Scholar] [CrossRef]
- Ozgumus, T.; Mobedi, M.; Ozkol, U. Determination of kozeny constant based on porosity and pore to throat size ratio in porous medium with rectangular rods. Eng. Appl. Comput. Fluid Mech. 2014, 8, 308–318. [Google Scholar] [CrossRef] [Green Version]
- Rutt, M.; Lekakou, C.; Smith, P.A.; Sordon, A.; Santoni, C.; Meeks, G.; Hamerton, I. Methods for process-related resin selection and optimisation in high-pressure resin transfer moulding. Mater. Sci. Technol. 2018, 35, 327–335. [Google Scholar] [CrossRef]
- Dutta, D.; Gope, S.; Negi, D.S.; Datta, R.; Sood, A.K.; Bhattacharyya, A.J. Pressure-induced capillary encapsulation protocol for ultrahigh loading of sulfur and selenium inside carbon nanotubes: Application as high performance cathode in Li−S/Se rechargeable batteries. J. Phys. Chem. C 2016, 120, 29011–29022. [Google Scholar] [CrossRef]
- Lekakou, C.N.; Richardson, S.M. Simulation of reacting flow during filling in reaction injection moulding (RIM). Polym. Eng. Sci. 1986, 26, 1264–1275. [Google Scholar] [CrossRef]
- Elsayed, Y.; Lekakou, C.; Tomlins, P. Modeling, simulations, and optimization of smooth muscle cell tissue engineering for the production of vascular grafts. Biotechnol. Bioeng. 2019, 116, 1509–1522. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Hu, H.; Ding, X.; Yuan, H.; Jin, C.; Nai, J.; Liu, Y.; Wang, Y.; Wan, Y.; Tao, X. 12 years roadmap of the sulfur cathode for lithium sulfur batteries (2009–2020). Energy Storage Mater. 2020, 30, 346–366. [Google Scholar] [CrossRef]
Title 1 | Solid S8 Orthorhombic T < 95 °C | Solid S8 Monoclinic 95 °C ≤ T < 120 °C | Melt Sulfur 120 °C ≤ T < 159 °C | Melt Sulfur 159 °C ≤ T |
---|---|---|---|---|
ρS (kg m−3) | 2070 | 1960 | 1819 | 1819 |
a | 21.22 | 21.22 | −4540.97 | −37.93 |
b | 3.86 | 3.86 | 26,065.60 | 133.24 |
c | 22.27 | 22.27 | −55,520.70 | −95.32 |
d | −10.32 | −10.32 | 42,112.20 | 24.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lasetta, K.; Baboo, J.P.; Lekakou, C. Modeling and Simulations of the Sulfur Infiltration in Activated Carbon Fabrics during Composite Cathode Fabrication for Lithium-Sulfur Batteries. J. Compos. Sci. 2021, 5, 65. https://doi.org/10.3390/jcs5030065
Lasetta K, Baboo JP, Lekakou C. Modeling and Simulations of the Sulfur Infiltration in Activated Carbon Fabrics during Composite Cathode Fabrication for Lithium-Sulfur Batteries. Journal of Composites Science. 2021; 5(3):65. https://doi.org/10.3390/jcs5030065
Chicago/Turabian StyleLasetta, Kyriakos, Joseph Paul Baboo, and Constantina Lekakou. 2021. "Modeling and Simulations of the Sulfur Infiltration in Activated Carbon Fabrics during Composite Cathode Fabrication for Lithium-Sulfur Batteries" Journal of Composites Science 5, no. 3: 65. https://doi.org/10.3390/jcs5030065
APA StyleLasetta, K., Baboo, J. P., & Lekakou, C. (2021). Modeling and Simulations of the Sulfur Infiltration in Activated Carbon Fabrics during Composite Cathode Fabrication for Lithium-Sulfur Batteries. Journal of Composites Science, 5(3), 65. https://doi.org/10.3390/jcs5030065