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Abstract: The nonlinear steady state large amplitude forced vibration response of a laminated composite
annular sector plate is presented. The nonlinear governing equation of motion of the laminated com-
posite annular sector plate has been obtained using kinematics of first-order shear deformation theory
(FSDT) and employing Hamilton’s principle. The governing equations of motion have been solved
in a time domain using a modified shooting method and arc-length/pseudo-arc length continuation
technique. The influence of the boundary condition, sector angle, and annularity ratio on the linear
as well as nonlinear steady state forced vibration response has been investigated. The strain/stress
variation across the thickness of the annular sector plate is presented to explain the reason for a de-
crease/increase in hardening nonlinear behaviour. The periodic variation of the non-linear steady state
stress has also been obtained to throw light into the factors influencing the unequal stress half cycles
and multiple cyclic stress reversals, which is detrimental to the fatigue design of laminated composite
annular sectorial plates. The frequency spectra of the steady state stress reveals large even and odd
higher harmonic contributions for different cases due to changes in the restoring force dynamics. The
modal interaction/exchange during a cycle is demonstrated using a deformed configuration of the
laminated annular sector plate.

Keywords: annular sector plate; forced vibration; nonlinear; Fast Fourier Transform (FFT)

1. Introduction

Annular sector plates are widely employed as engineering components in civil, de-
fence, biomedical implantation, annular segment cavities in aerospace, rail transport, and
terminals of cylindrical vessels, etc. These structural components, when exposed to dynamic
loads, may undergo large amplitude vibrations. In such scenarios, the linear analysis over
predicts the displacement and the inclusion of non-linear terms in a strain-displacement
relationship that is crucial for correct estimation of the response. The nonlinear forced
vibration analysis of laminated annular sector plates provides insight into the rich dynamic
behaviour that is not reflected in the linear analysis.

The exact analytical solution for the free vibration of isotropic sector plates with simply
supported radial edges have been presented by Huang et al. [1] and McGee et al. [2]. The
free vibration characteristics of isotropic thin sector plates have been investigated based
on an extended differential quadrature method [3]. The flexural free vibration frequencies
have been obtained for circular and annular sectorial thin isotropic plates using sector
Fourier p-element [4] and curved strip Fourier p-element method [5]. The Chebyshev-Ritz
method has been employed by Zhou et al. [6] for the free vibration analysis of isotropic
annular sectorial plates. The boundary layer function has been employed by Jomehzadeh
and Saidi [7] for the analytical free vibration solution of transversely isotropic sector plates.

The free vibration characteristics of two layered laminated annular sector plates was
carried out by Srinivasan and Thiruvenkatachari [8]. The free vibration analysis of smart
annular functionally graded(FG) plates has been carried out based on Kirchhoff plate The-
ory [9] and first-order shear deformation theory (FSDT) [10]. The differential quadrature
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method has been employed for the analysis of free vibration characteristics of laminated,
composite sector plates [11,12]. The modified Fourier series method has been employed for
the free vibration analysis of laminated composite and FG sector plates [13]. Free in-plane
vibration behaviour of FGM and orthotropic circular, annular, and sector plates has been
explored based on a modified Fourier–Ritz approachby Wang et al. [14,15]. Liu et al. [16]
presented the free vibration analysis of a thick, annular sector plate resting on the Paster-
nak foundation using the three-dimensional elasticity theory and the improved Fourier
series method. The discrete singular convolution (DSC) is used for obtaining the natural
frequencies of isotropic, laminated composite, functionally graded, and carbon nanotube
reinforced (CNTR) composite materials [17]. The free vibration and buckling characteristics
of functionally graded carbon-nanotube-reinforced composite annular sector plates have
been investigated by using a variational, differential quadrature (VDQ) method [18]. The
variational differential quadrature finite element method (VDQFEM) has been employed
for the free vibration analysis of the FG-CNTRC composite annular sector plates resting
on the Winkler-Pasternak foundation [19] and for plates with different cut-outs [20]. The
free vibration analysis of thick laminated circular plates with free, clamped, and simply
supported boundary conditions at the outer edges have been carried out by Khare and
Mittal [21]. The 2D Fourier-Ritz method has been employed for free vibration analysis of a
laminated annular/circular plate with different boundary conditions [22]. Yuan et al. [23]
presented the exact analytical solution for the free in-plane vibration of the sector plate
employing a Helmholtz decomposition. Harmonic differential quadrature (HDQ) and
discrete singular convolution (DSC) is employed for the modal analysis of laminated
and functionally graded sector plates [24]. The free vibration characteristics of smart FG
annular sector plates with simply supported radial edges has been investigated by em-
ploying Fourier series expansion [25]. The frequency behaviour of the initially stressed,
multi-layered CNT circular/annular plate is analysed by employing a state space-based dif-
ferential quadrature method (SS-DQM) [26]. The free vibration analysis of multidirectional
FG circular/elliptical/sector plates with variable thickness has been carried out using a
higher order shear deformation theory-based iso-geometric analysis [27].

The nonlinear free vibration response of laminated annular sector plates have been
investigated employing the sector p-element method by Houmat [28], whereas the non-
linear free vibration of smart FG-CNT composite annular sector plates have been analyzed
by Mohammadzadeh-Keleshteri et al. [29]. The nonlinear post-buckling behaviour of the
thin FG annular plate under the influence of thermal and mechanical load have been
investigated by Aghelinejad et al. [30]. Kumar [31] carried out the experimental and numer-
ical analysis of cantilever beams subjected to harmonic excitation to study the nonlinear
dynamic response of the beams. The free vibration response of laminated composite
conical/cylindrical shells and annular plate with a general edge constraint have been
investigated by the power series method and wave-based matrix by He et al. [32].

Most of the studies pertaining to the dynamics of annular sector plates are restricted
to the free vibration investigations. The transient dynamic analysis of sectorial plates are
limited to very few studies [33,34]. The nonlinear transient response of the annular sector
plate for first few cycles has been presented, under a uniformly distributed step, sawtooth,
and sinusoidal loads using Chebyshev polynomials employing a Houbolt time marching
scheme by Sharma et al. [33]. The free and transient dynamic analysis of a saturated, porous,
annular sector made of of functionally-graded material employing the Rayleigh-Ritz energy
formulation and Newark methods has been carried out by Babaei et al. [34].

From the literature review, it can be inferred that there is no research available in the
current literature on the nonlinear steady state, forced vibration response studies of even
isotropic annular sector plates, except for the work of the author [35] in which the nonlinear
response characteristics of bimodular laminatd annular plates were investigated.

The study of the nonlinear steady state forced a vibration response of laminated
composite annular sector plates, is the subject of the present work. Based on the first-order
shear deformation theory, the analysis was performed using C◦ continuous, eight-noded
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quadrilateral, shear flexible element with five nodal degrees of freedom. Geometric non-
linearity is included in the study using the Von Kármán assumption for small strains and a
considerably large deflection. Using the modified shooting approach based on Newmark
time marching, a nonlinear periodic forced vibration response is obtained in the time
domain. For obtaining the post-bifurcation, unstable branches of a periodic response and
the continuation scheme based on arc-length/pseudo-arc length methods were used. It is
pertinent to mention that the commercially available FE softwares are unable to capture
the unstable regimes of the periodic response.

The novelty of the work includes the investigation of the influence of annularity
(outer to inner radius ratio), boundary conditions, and sector angle on the nonlinear forced
vibration response. In order to shed light on the nonlinear forced vibration behavior of
sectorial plates, the temporal and thickness variations of stress/strain, the frequency spectra
of the response, and the phase plane plots are obtained. The deformed configuration of
the sectorial plate at various instances during a periodic cycle is also presented, which
reveal the interaction of the first and higher modes. The present analysis becomes necessary
for accurate prediction of stresses and strains for the efficient and safe dynamic design
of a laminated composite sectorial plate during the service as a biomedical implantation,
annular segment cavities in aerospace, rail transport and terminals of cylindrical vessels,
etc. where they are subjected to dynamic loads. It is apt to mention here that the linear
analysis gives a conservative estimate of the displacement/stresses/strains, etc. and may
lead to erroneous design.

2. Formulation

Figure 1 displays a laminated composite annular sector plate with an inner and outer
radii and thicknesses r1, r2, and h, respectively.
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Figure 1. Laminated composite annular sector plate.

At any arbitrary point (x, y, z) on the sector plate, the displacement field (u, v, w)
based on FSDT can be specified as:

u(x, y, z, t) = u0(x, y, t) + zβx(x, y, t)

v(x, y, z, t) = v0(x, y, t) + zβy(x, y, t)

w(x, y, z, t) = w0(x, y, t)

(1)
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where, u0, v0, and w0 are the displacements of the middle surface, βx and βy represent the
rotation of the meridional and hoop section rotations, respectively.

The nonlinear strains for the annular sector plate are taken as:

εxx =
(

u′0,x +
1
2 w′0,x

2
)

εyy =
(

u0
r + v′0,y +

1
2 w′0,y

2
)

γxy =
(

u′0,y −
v0
r + v′0,x + w′0,xw′0,y

)
γyz = (βx + w′0,x), γxz = (βy + w′0,y)

(2)

The strain field is given as:

{ε} =


εxx
εyy
γxy

 =


u′0,x

u0
r + v′0,y

u′0,y −
v0
r + v′0,x

+ z


β′x,x

βx
r + β′y,y

β′x,y + β′y,x −
βy
r

+


1
2 w′0,x

2

1
2 w′0,y

2

w′0,xw′0,y


{γ} =

{
γyz
γxz

}
=

{
βx + w′0,x
βy + w′0,y

} (3)

It can be seen from Equation (3) that, in addition to the linear strain-displacement
relation, the geometric nonlinearity has been incorporated through the nonlinear mid-plane
membrane strain vectors. This becomes necessary if the amplitude of the deformation is
the order of the sector plate’s thickness. The inclusion of nonlinearity in the formulation
through the strain-displacement relation leads to more accurate restoring force dynamics
as compared to linear analysis.

The stress-strain relationship is given by: σ11
σ22
τ12

 =

 C11 C12 0
C12 C22 0
0 0 C33

 ε1
ε2

γ12


[

τ13
τ23

]
=

[
C44 0
0 C55

][
γ13
γ23

] (4)

C11 = Y1
(1−ν12ν21)

, C12 = Y2ν12
(1−ν12ν21)

, C22 = Y2
(1−ν12ν21)

C33 = G12, C44 = G13, C55 = G23

(5)

The annular sector plate comprises of N different layers of laminas. The constitu-
tive relations for an arbitrary layer ‘k’ in the laminate (x, y, z) coordinate system can be
represented as: {

σk
}
=
{

σk
xx σk

yy τk
xy τk

xz τk
yz

}T
=
[
Ck
]
{ε} (6)

Ck denote the elements of the kth layer’s transformed, reduced stiffness coefficients and
are expressed in terms of the material properties and the layer’s ply-angle [35].

The total strain energy V is given by:

V =
1
2

x
[

N

∑
k=1

∫ zk+1

zk

{ε}T{Ck
}
{ε}dz

]
dx dy (7)

Let the annular sector plate be acted upon by a uniformly distributed external trans-
verse harmonic force f = f0 cos ωFt. Then the work done by the external force (with forcing
frequency (ωF) is given by:

W =
x

f w0dxdy (8)
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The total kinetic energy T is given by:

T =
1
2

x
[

N

∑
k=1

∫ zk+1

zk

ρk
{ .

u
.
v

.
w
}{ .

u
.
v

.
w
}Tdz

]
dx dy (9)

where, ρk is the density of the kth layer of the laminated annular sector plate.
The total strain energy functional V can be written as the sum of linear (V1) and

nonlinear strain energy (V2 and V3) functions as:

V = V1 + V2 + V3 =
1
2

x
(dTKd+

1
3

dTK
′
d +

1
6

dTK”d)dxdy (10)

where K is the linear stiffness matrix whereas K
′

and K” represent quadratic and cubic
nonlinear stiffness matrices. The elements of linear, quadratic/cubic nonlinear stiffness
matrices have been defined in Reference [36] and have not been presented here for the sake
of brevity. In order to discretize the annular sector plate, an eight-noded C0 continuous
serendipity quadrilateral element consisting of five degrees of freedom is employed. The
spatial interpolation of the displacement is expressed as:

(
u0, v0, w0, βx, βy

)
=

∞

∑
i=1

N0
i
(
u0i, v0i, w0i, βxi, βyi

)
(11)

The original shape functions N0
i are smoothened using the least square method for

the interpolation of the constrained strain terms for avoiding membrane/transverse shear
locking [35]. Using a standard finite element formulation, the displacement {d}, velocity
vector

{
d
′}

, and transverse displacement w0 are expressed in terms of a strain displace-
ment matrix [B], the interpolation matrix [H], and interpolation matrix for transverse
displacement [Hw] as:

{d} = [B]{Ue},
{

d
′}

=
{

u′0, v′0, w′0, β′x, β′y

}T
= [H]

{
Ue′
}

, w0 = [Hw]{Ue} (12)

{Ue} is the elemental displacement vector and
{

Ue′} is the elemental velocity vector.
Using Equation (12), the total strain energy (Equation (10)) can be written as:

V = 1
2{Ue}T[Ke]{Ue}+ 1

6{Ue}T[K
′e
]{Ue}+ 1

12{Ue}T[K”e
]{Ue} (13)

V = 1
2{Ue}T

(∫
A [B]T[K][B]dA

)
{Ue}+ 1

6{Ue}T
(∫

A [B]T[K
′
][B]dA

)
{Ue}

+ 1
12{Ue}T

(∫
A [B]T[K”][B]dA

)
{Ue}

(14)

The total kinetic energy is given as:

T =
1
2

{
Ue′
}T

[Me]
{

Ue′
}
=

1
2

{
Ue′
}T
(∫

A
[H]T[m][H]dA

){
Ue′
}

(15)

Incorporating the dissipation of energy based on Rayleigh proportional damping of
the form,

[C] = a[M] + b[K](with a = 2ζi
ωi

; b = ζiωi; ζi is the modal damping factor correspond-
ing to the ith mode) and applying Hamilton’s principal, the governing equation of motion
can be written as:

[M]
{

U”
}
+ [C]

{
U
′
}
+
[
K + (1/2)K

′
(U) + (1/3)K”(U)

]
{U} = {F} (16)

where U”, U
′
and U represent the acceleration, velocity, and displacement vectors, respectively.
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3. Solution Procedure

The solution of the governing equation of motion, to obtain the nonlinear forced
vibration steady state response can be either done based on the time-domain or frequency
domain methods. The direct time integration methods are unable to capture the entire
nonlinear frequency response curves, especially the unstable regimes. The commonly
employed frequency domain methods (harmonic/incremental harmonic balance technique)
suffers from the drawback that they require participating modes to be assumed. The
present work employs a modified shooting method for obtaining the nonlinear steady state
response of annular sector plates. Newmark direct time integration is used to obtain the
initial guess and the periodicity condition is imposed to extract the nonlinear periodic
response by employing a modified shooting method. The modified shooting method
preserves the banded nature of the matrices, leading to a computationally efficient scheme.
The response curves post-bifurcation are estimated using an arc-length and pseudo-arc
length continuation scheme [35,36].

In the shooting method, the state vector (
{

U(0)
U′(0)

}
= η) and its solution (

{
U(t,η,ωF)
U′(t,η,ωF)

}
)

with a minimal time period is sought such that:{
U(t,η,ωF)
U′(t,η,ωF)

}
2N∗1

= η2N∗1 (17)

The solution at any time t is obtained by integrating Equation (16) using Newmark’s
direct time integration method and the Newton-Raphson iteration method after taking an
initial guess of the state vector as η0 along with the correction {∆η}. Employing Taylor
series expansion and retaining the linear terms only, we get:{

∂U
∂η (T,η0, ωF)
∂U
′

∂η (T,η0, ωF)
− I

}
∆η = η0 −

{
U(T,η0, ωF)

U
′
(T,η0, ωF)

}
−
{

∂U
∂ωF

(T,η0, ωF)
∂U
′

∂ωF
(T,η0, ωF)

}
∆ωF (18)

Differentiating the equation of motion (Equation (16)) with respect to the state vector
leads to the following.

M
∂U′′

∂η

∣∣∣∣
t+∆t

+ C
∂U′

∂η

∣∣∣∣
t+∆t

+ KT |t+∆t
∂U
∂η

∣∣∣∣
t+∆t

= [0] (19)

where KT|t+∆t =
[
K+K

′
(δ) +K”(δ)

]
t+∆t

represents a tangent stiffness matrix. Equation (19)

is solved using Newmark’s method.

∂U′′

∂η

∣∣∣∣
t+∆t

= a0

[
∂U
∂η

∣∣∣∣
t+∆t
− ∂U

∂η

∣∣∣∣
t

]
− a2

∂U′

∂η

∣∣∣∣
t
− a3

∂U′′

∂η

∣∣∣∣
t
, (20)

∂U′

∂η

∣∣∣∣
t+∆t

= a1

[
∂U
∂η

∣∣∣∣
t+∆t
− ∂U

∂η

∣∣∣∣
t

]
− a4

∂U′

∂η

∣∣∣∣
t
− a5

∂U′′

∂η

∣∣∣∣
t
, (21)

where a0 = 1
δ̃∆t2 , a1 = λ

δ̃∆t
, a2 = 1

δ̃∆t
, a3 = 1

2δ̃
− 1, a4 = λ

δ̃
− 1, a5 = ∆t

2

[
λ
δ̃
− 2
]
, ∆t is step

size, and δ̃ and λ and are constants.
Equation (19) can be written as

:

[a0M + a1C + KT ]
∂U
∂η

∣∣∣∣
t+∆t

= [a0M + a1C]
∂U
∂η

∣∣∣∣
t
+ [a2M + a4C]

∂U′

∂η

∣∣∣∣
t
+ [a3M + a5C]

∂U′′

∂η

∣∣∣∣
t

(22)

The right hand side coefficient matrix of Equation (18) is evaluated using Equations (20)–(22).
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The derivative of the state vector with respect to ωF( ∂U
∂ωF

and ∂U′
∂ωF

) are obtained from
the solution of

M
∂U′′

∂ωF

∣∣∣∣
t+∆t

+ C
∂U′

∂ωF

∣∣∣∣
t+∆t

+ KT |t+∆t
∂U
∂ωF

∣∣∣∣
t+∆t

=
∂F

∂ωF
(23)

with null initial conditions for
∂U
∂ωF

and
∂U′

∂ωF
.

The solution of Equation (18) is obtained iteratively by correcting the state vector until
the solution converges. The simultaneous equation is solved based on the Cholesky method.
The steady state response corresponding to a certain forcing frequency is obtained away
from resonance. Based on the modified shooting process, the forcing frequency is increased
and the steady state solution is obtained. In the modified shooting method employing
frequency control, within one shooting cycle, ∆ωF in Equation (18) is given a value of zero.
It is noted that the shooting approach does not yield a converged stable steady state solution
near the points of discontinuity in the bifurcation point neighborhood. The steady state
solution in this region is obtained by switching over to the arc length/pseudo-arc length
continuation method where the arc length is incremented and the converged unknown
frequency is obtained.

In the arc-length continuation, using Equation (19), the arc-length increment ∆s is
specified and the increment in the frequency is obtained from:

{∆η}T{∆η}+ ∆ω2
F = ∆s2 (24)

4. Validation

The present finite element (FE) formulation and the solution procedure employed for
the steady state nonlinear forced vibration analysis of a laminated composite annular sector
plate is validated with the available results in the literature. The first layer refers to the
bottom layer in the analysis and it is presumed that all layers are of equal thickness. The
fiber angle is specified with respect to the meridional direction. Explicit integration in the
thickness direction and the 3×3 Gauss quadrature numerical integration in x-directions and
y-directions is employed to evaluate elemental stiffness/mass matrices and load vector. The
boundary conditions considered are a combination of Clamped (u0 = v0 = w0 = βx = βy = 0
along straight/curved edges) and Simply Supported (S) (u0 = v0 = w0 = βx = 0 at y/r = 0
and φ (straight edges), u0 = v0 = w0 = βy = 0 at x = 0 and L (curved edges)).

Since the results on the nonlinear, forced vibration response of laminated composite
annular sector plates are not available, the formulation and solution procedure are validated
with the free vibration frequencies of laminated composite annular sector plates with a
different sector angle and boundary conditions. The results are presented in Table 1. It can
be seen from the table that the frequencies are in good agreement with the existing results
(Su et al. [37] and Zhang et al. [22]).

Table 1. Free vibration frequencies (in Hz) for three-layered (0◦/90◦/0◦) laminated, annular sector
plates (r1/r2 = 0.2, h = 0.1 r2, r2 =1 m, E2 = 168 GPa, G12/E2 = G13/E2 = 0.6, G23/E2 = 0.5, ν12 = ν23 =
ν13 = 0.25, ρ = 5700 kg/m3).

φ BC
E1/E2 = 2 E1/E2 = 5

[37] [22] Present [37] [22] Present

60◦
SSSS 1129.43 1140.39 1129.14 1296.75 1316.26 1296.24
CCSS 1347.15 1372.93 1346.74 1551.62 1596.29 1550.84

120◦
SSSS 694.41 703.16 694.16 896.74 915.24 896.29
CCSS 836.59 864.60 836.37 1085.36 1157.51 1,084.68

240◦
SSSS 582.88 587.87 582.66 814.03 826.91 813.61
CCSS 737.19 760.77 737.00 1009.22 1073.60 1008.52
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5. Results and Discussion

The nonlinear steady state forced vibration response of a laminated composite annular
sector plate was then investigated and presented. The material properties considered in
the analysis are taken as (E1/E2 = 25, E2 = E3 = 1 GPa, G12/E2 = G13/E2 = 0.5, G23/E2 = 0.2,
ν12 = ν23 = ν13 = 0.25, ρ = 1000 kg/m3). Based on the convergence study, the time step ∆t is
taken as π/100ωF.

The influence of edge constraints on the linear and nonlinear steady state response
of laminated composite annular sector plates ((0◦/90◦), r2/r1 = 3, b1/h = 100, φ = 60◦,
f 0 = 30 Pa, b1 = 1 m, ζ = 0.01) have been investigated and the peak amplitude at the
center of the plate corresponding to variations in the forcing frequency are presented
in Figure 2. It is revealed from the linear as well as nonlinear response curves that the
displacement amplitude is greatest for a laminated annular sector plate with all edges
simply supported and is the minimum for all edges clamped. The annular sector plates
with CSCS (radial edges clamped and circumferential edge simply supported) and SCSC
(radial edge simply supported and circumferential edge clamped) boundary conditions
reveal a nearly equal peak response amplitude in linear as well as nonlinear analysis.
However, the forcing frequency corresponding to peak amplitude is greatest for SCSC
(ωF = 1.87 ωn1) followed by CCCC (ωF = 1.74 ωn1) and CSCS (ωF = 1.39 ωn1) annular sector
plates. The peak non-dimensional response amplitude obtained based on the linear analysis
is very large compared to those obtained based on the geometrically nonlinear analysis
and this difference is greatest for the SSSS (15.83 times) boundary condition followed by
SCSC (7.92 times), CSCS (7.89 times) and CCCC (5.56 times) boundary conditions.
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Figure 2. Effect of the boundary condition on the (a) linear and (b) nonlinear forced vibration response curves, for a
laminated annular sector plate ((0◦/90◦), r2/r1 = 3, b1/h = 100, φ = 60◦, f 0 = 30 Pa, b1 = 1 m, ζ1 = 0.01).

The peculiar nature of the nonlinear response for different boundary conditions
(Figure 2) have been analyzed with the help of fiber-direction normal strain and stress vari-
ations across the thickness of the laminate (Figure 3). It can be seen from the strain/stress
variations that the entire bottom layer (0◦) is in tension in both the half cycles for CCCC
and SCSC boundary conditions unlike CSCS and SSSS cases where the tensile portion of
the bottom layer is almost 50%, leading to a greater hardening of nonlinear behavior for
CCCC and SCSC laminated annular sector plates as observed in the frequency response
(Figure 2). Furthermore, the total tensile portion of laminate thickness (top and bottom
layers) in both the half cycle is greatest for the CCCC boundary condition and is least
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for the SSSS boundary conditions, leading to the greatest peak amplitude for the SSSS
boundary condition and the smallest peak amplitude for the CCCC boundary condition.
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Figure 3. (a) Nonlinear fiber-direction normal strain (ε11) and (b) stress (σ11) distribution corresponding to the peak
amplitude in Figure 2b.

The variation of the nonlinear steady state stress (fiber-direction normal stress σ11)
within a periodic cycle corresponding to peak displacement amplitude (Figure 2) at the
center of a laminated, annular sector plate with different boundary conditions is presented
in Figure 4. It is revealed from the plots that the annular sector plate with SSSS and CSCS
boundary conditions exhibit nearly equal positive and negative half cycle times with stress
amplitude in tension greater than the compressive stress at the center ofboth the top and
bottom surface.In case of a laminated annular sector plate with CCCC and SCSC boundary
conditions, the center of top and bottom surfaces are subjected to tensile stress for a greater
portion of the periodic cycle.

For all the boundary conditions, the tensile stress amplitude is greater when com-
pared to compressive stress within a periodic cycle. The difference between the tensile
and compressive stress amplitude is maximum for the annular sector plate with CCCC
boundary conditions. For an annular sector plate with SCSC boundary conditions, the
stress amplitude at the center of the top surface is least whereas it is at a maximum value
at the center of the bottom surface compared to the other boundary conditions.

The cyclic stress variation reveals a multiple stress reversal within a loading cycle
for all the boundary conditions (except SSSS), which is detrimental to fatigue design of
a laminated annular sector plate. The frequency spectra of the nonlinear steady state
stress (σ11) is obtained using Fast Fourier Transform (FFT) and the results are presented
in Figure 5. The FFT reveals appreciably higher harmonic involvement in addition to the
fundamental harmonics for all the boundary conditions. The third harmonic contribution is
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nearly equal to the fundamental harmonic at the top surface of an annular sector plate with
the CCCC and SCSC boundary conditions, which is due to comparable cubic non-linear
and linear restoring forces.
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Figure 4. Nonlinear periodic stress (σ11) variation at the center of (a) top and (b) bottom surfaces corresponding to peak
amplitude in the nonlinear response of Figure 2b.
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Figure 5. Fast Fourier transform of nonlinear periodic stress (σ11) corresponding to Figure 4.

The role of the sector angle on the nonlinear forced vibration response of a laminated
composite annular sector plate is investigated and the non-dimensional, transverse dis-
placement at the center of the sector plate ((0◦/90◦), r2/r1 = 3, b1/h = 100, CCCC, f 0 = 30 Pa,
b1 = 1 m, ζ1 = 0.01) corresponding to variations in the forcing frequency is presented in
Figure 6. The nonlinear peak amplitude at the center of the sector plate increases with the
rise in the sector angle. The laminated annular sector plate with sector angle 90◦ and 120◦

exhibit a prominent secondary peak in addition to the primary peak. The variations in
the linear and nonlinear peak amplitude at the center of the laminated composite annular
sector plate with the sector angle are presented in Figure 7. It can be seen that the difference
between the linear and nonlinear peak amplitude increases with the increase in the sector
angle and this difference is 8.37 times for sector angle 120◦ and is 1.64 times for sector angle
30◦. This is due to a greater contribution of nonlinear restoring forces with an increase in
the sector angle, which limits the nonlinear peak amplitude for an increased sector angle.
The percentage increase in the peak amplitude with the increase in the sector angle is
significantly greater for linear analysis as compared to non-linear analysis. The non-linear
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steady state stress (σ11) variation during a cycle corresponding to peak amplitude at the
center of the sector plate in the frequency response curves of Figure 6 are presented in
Figure 8. It can be seen from Figure 8 that the center of the top surface of the annular sector
plate with a sector angle of 90◦ and 120◦ is subjected to tensile stress. However, the stress
amplitude is greater for the sector plate with a sector angle of 60◦.
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Figure 6. Effect of the sector angle on the nonlinear forced vibration response curves for a laminated
annular sector plate ((0◦/90◦), r2/r1 = 3, b1/h = 100, CCCC, f 0 = 30 Pa, b1 = 1 m, ζ = 0.01).
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Figure 7. Comparison of linear and non-linear peak amplitude at the center of the laminated
composite annular sector plate for a different sector angle.



J. Compos. Sci. 2021, 5, 83 12 of 18

J. Compos. Sci. 2021, 5, x FOR PEER REVIEW 12 of 19 
 

 

 

Figure 7. Comparison of linear and non-linear peak amplitude at the center of the laminated com-

posite annular sector plate for a different sector angle. 

 

(a) Top Surface                            (b) Bottom Surface 

Figure 8. Periodic stress (σ11) distribution corresponding to peak amplitude in the Figure 6. 

The center of the bottom surface is subjected to partly tensile and partly compressive 

stress during a periodic cycle with a greater tensile portion during a cycle for all the sector 

angles considered. The stress amplitude at the center of the bottom surface is smaller for 

the sector plate with a sector angle of 60° compared to a sector angle of 90° and 120°. 

Furthermore, there are multiple slope changes and stress reversals during a periodic cycle 

corresponding to a single loading cycle for laminated annular sector plates for all the sec-

tor angles considered, revealing significantly large higher harmonic contributions. The 

Fast Fourier Transform of the steady state stress at the center of the top and bottom surface 

is presented in Figure 9. It can be seen that, at the top surface the second harmonic contri-

bution is greater than the fundamental harmonic level for sector angle 90° and 120°, which 

may be due to greater involvement of quadratic nonlinear restoring forces compared to 

linear restoring forces. However, at the center of the top surface corresponding to the peak 

0.6488
1.3608 1.4573 1.6972 1.75641.0631

4.2146

8.1011

13.014

14.7102

0

2

4

6

8

10

12

14

16

30 45 60 90 120

w
0
/h

Sector Angle ( ) 

GNL

0.00 0.25 0.50 0.75 1.00

-9.0

-4.5

0.0

4.5

9.0

 
Nondim. time 

(t/T)

 




0.00 0.25 0.50 0.75 1.00

-10

-5

0

5

10

 
Nondim. time 

(t/T)

 




Figure 8. Periodic stress (σ11) distribution corresponding to peak amplitude in the Figure 6.

The center of the bottom surface is subjected to partly tensile and partly compressive
stress during a periodic cycle with a greater tensile portion during a cycle for all the sector
angles considered. The stress amplitude at the center of the bottom surface is smaller for the
sector plate with a sector angle of 60◦ compared to a sector angle of 90◦ and 120◦. Furthermore,
there are multiple slope changes and stress reversals during a periodic cycle corresponding to
a single loading cycle for laminated annular sector plates for all the sector angles considered,
revealing significantly large higher harmonic contributions. The Fast Fourier Transform of the
steady state stress at the center of the top and bottom surface is presented in Figure 9. It can be
seen that, at the top surface the second harmonic contribution is greater than the fundamental
harmonic level for sector angle 90◦ and 120◦, which may be due to greater involvement of
quadratic nonlinear restoring forces compared to linear restoring forces. However, at the
center of the top surface corresponding to the peak amplitude, the sector plate with a sector
angle of 60◦ depicts significant odd-order harmonic contributions, which may be due to
greater cubic-nonlinear restoring force contributions. The frequency spectra of the steady
state stress at the bottom surface corresponding to a peak amplitude for all the sector angles
considered reveal comparable second and third harmonics due to comparable quadratic and
cubic non-linear restoring forces.
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The deformed configuration of the laminated composite annular sector plate with a
sector angle of 120◦ corresponding to primary (Point A) and secondary (Point B) peaks
observed in the non-linear frequency response curve of Figure 6 at different instants during
a periodic cycle is obtained to show the modal exchange. The nonlinear steady state
response corresponding to a primary peak amplitude (Point A) at the center for sector
angle 120◦ is presented in Figure 10a and the corresponding deformed configuration at



J. Compos. Sci. 2021, 5, 83 13 of 18

different instants marked is shown in Figure 10b. The nonlinear steady state response
corresponding to a secondary peak amplitude (Point B) at the center for sector angle 120◦ is
presented in Figure 11a and the corresponding deformed configuration at different instants
marked is shown in Figure 11b. The deformed configuration corresponding to a secondary
peak reveals the presence of higher modes and greater modal exchange during a periodic
cycle compared to deformed configuration of the primary peak.
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Figure 11. (a) Non-linear steady state response corresponding to secondary peak amplitude (Point B) of Figure 6 at the
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The effect of the annularity ratio (r2/r1) on the linear and nonlinear forced vibration
response is investigated next. The linear and nonlinear peak displacement amplitude
corresponding to the variations in forcing frequency ratio for laminated composite annular
sector plate with a different annularity ratio ((0◦/90◦), b1/h = 100, φ = 60◦, SSSS, f 0 = 30 Pa,
b1 = 1 m, ζ = 0.01) is presented in Figure 12. It can be inferred from Figure 12 that, with
the inclusion of geometric nonlinearity, the frequency response curve reveals hardening
nonlinearity for laminated composite annular sector plates and the degree of hardening
nonlinearity increases and the peak amplitude grows with a rise in annularity (outer-to-
inner radius ratio) for simply supported boundary conditions.
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Figure 12. Effect of annularity ratio (r2/r1) on the (a) linear and (b) nonlinear, forced vibration
response curves, for laminated annular sector plate ((0◦/90◦), b1/h = 100, φ = 60◦, SSSS, f 0 = 30 Pa,
b1 = 1 m, ζ = 0.01).

The forcing frequency corresponding to peak amplitude increases with a rise in the
outer-to-inner radius ratio (r2/r1) for all three cases. The degree of hardening nonlinearity
for laminated, composite annular sector plates is greater for r2/r1 = 3 followed by r2/r1 = 2.5
and r2/r1 = 2. It can be seen from Figure 12 that the linear frequency also increases as the
outer-to-inner radius ratio (r2/r1) increases. The comparison of peak amplitude in the linear
and nonlinear analysis reveals that the peak amplitude in linear analysis is significantly
larger when compared to nonlinear analysis with the peak amplitude in the linear analysis
being 15.83, 8.26, and 3.49 times the peak amplitude obtained from nonlinear analysis
for r2/r1= 3, 2.5, and 2, respectively. The reason for a spike in the nonlinear frequency
response curve for annularity ratio r2/r1= 3 corresponding to the forcing frequency ratio
ωF/ω = 0.55 is explored using steady state response history, phase plane plot, and the FFT
of the response. The results have been presented in Figure 13.
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It is revealed from the steady state response history that, at ωF/ω = 0.55, the center of
the annular sector plate is subjected to an unequal positive/negative half cycle. Further-
more, the phase plane plot is asymmetrical for ωF/ω = 0.55, revealing significantly higher
harmonic contributions. The frequency spectra of the nonlinear steady state displacement
reveal significant even order harmonic contributions, which may be due to higher con-
tribution of a quadratic nonlinear restoring force in addition to the linear restoring force.
However, the frequency spectra at ωF/ω = 1.367 corresponding to peak amplitude in
Figure 12 for r2/r1 = 3 reveal significant odd order harmonics due to a significant cubic,
non-linear restoring force contributions.

6. Conclusions

The main aim of this paper is to investigate the nonlinear forced vibration behaviour
of a laminated composite annular sector plate under the action of transverse harmonic
force. The analysis is carried out in the time domain using the modified shooting and arc
length/pseudo arc length continuation method. The spatial and temporal variations of the
stress and strain are presented to showcase the unequal positive/negative half cycle time
and multiple slope changes/reversal in the stress during a cycle detrimental to the fatigue
design. The spikes/sudden change in the slope in the frequency response curve has been
explored using the phase plane plot and the FFT of the response. The main conclusion
drawn can be summarized as:

• The peak non-dimensional, response amplitude obtained based on the linear analysis
is very large compared to those obtained based on the geometrically nonlinear analysis
and this difference is greatest for SSSS (15.83 times) followed by SCSC, CSCS, and
CCCC boundary conditions.

• For all the boundary conditions considered, the nonlinear fibre-direction tensile stress
amplitude is greater compared to compressive stress within a periodic cycle.

• The cyclic stress variation reveals multiple stress reversal within a loading cycle for
all the boundary conditions (except SSSS), which is detrimental to fatigue design of a
laminated annular sector plate.

• With the increase in the sector angle, the linear as well as non-linear peak amplitude
of the sector plate increases. The percentage rise in amplitude with the increase in the
sector angle is higher for linear analysis relative to non-linear analysis. The laminated
annular sector plate with a sector angle of 90◦ and 120◦ exhibit a prominent secondary
peak in addition to the primary peak.

• The second harmonic contribution is higher than the fundamental harmony in some
cases for sector angles of 90◦ and 120◦, which may be due to greater involvement of
quadratic nonlinear restoring forces compared to linear restoring forces.

• The linear and nonlinear response amplitude increases with the rise in the annularity
ratio. The percentage increase in the peak amplitude with the increase in the annularity
ratio is larger with linear analysis as compared to non-linear analysis.

• The deformed configuration corresponding to a secondary peak reveals the presence
of higher modes and a greater modal exchange during a periodic cycle.
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