Investigating the Hall-Petch Constants for As-Cast and Aged AZ61/CNTs Metal Matrix Composites and Their Role on Superposition Law Exponent
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microstrain and Dislocation Density
3.2. Microstructure Characterization
3.3. Hall–Petch Coefficient
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Raj, R.; Thakur, D.G. Qualitative and quantitative assessment of microstructure in Al-B4C metal matrix composite processed by modified stir casting technique. Arch. Civ. Mech. Eng. 2016, 16, 949–960. [Google Scholar] [CrossRef]
- Habibnejad-Korayem, M.; Mahmudi, R.; Poole, W.J. Enhanced properties of Mg-based nano-composites reinforced with Al2O3 nano-particles. Mater. Sci. Eng. A 2009, 519, 198–203. [Google Scholar] [CrossRef]
- Huang, S.-J.; Abbas, A. Effects of tungsten disulfide on microstructure and mechanical properties of AZ91 magnesium alloy manufactured by stir casting. J. Alloys Compd. 2019, 817, 153321. [Google Scholar] [CrossRef]
- Abbas, A.; Huang, S.-J. Qualitative and Quantitative Investigation of As-Cast and Aged CNT/AZ31 Metal Matrix Composites. JOM 2020, 72, 1–11. [Google Scholar] [CrossRef]
- Abbas, A.; Huang, S.J.; Ballóková, B.; Sülleiová, K. Tribological effects of carbon nanotubes on magnesium alloy AZ31 and analyzing aging effects on CNTs/AZ31 composites fabricated by stir casting process. Tribol. Int. 2020, 142, 105982. [Google Scholar] [CrossRef]
- Kumar, D.; Thakur, L. Recent Studies on the Fabrication of Magnesium Based Metal Matrix Nano-Composites by Using Ultrasonic Stir Casting Technique—A Review. Mater. Sci. Forum 2019, 969, 889–894. [Google Scholar] [CrossRef]
- Thangaraju, S.; Heilmaier, M.; Murty, B.S.; Vadlamani, S.S. On the estimation of true Hall-Petch constants and their role on the superposition law exponent in Al alloys. Adv. Eng. Mater. 2012, 14, 892–897. [Google Scholar] [CrossRef]
- Wang, X.; Hu, X.; Liu, W.; Du, J.; Wu, K.; Huang, Y.; Zheng, M. Ageing behavior of as-cast SiCp/AZ91 Mg matrix composites. Mater. Sci. Eng. A 2017, 682, 491–500. [Google Scholar] [CrossRef]
- Abbas, A.; Huang, S.-J. Investigation of severe plastic deformation effects on microstructure and mechanical properties of WS2/AZ91 magnesium metal matrix composites. Mater. Sci. Eng. A 2020, 780, 139211. [Google Scholar] [CrossRef]
- Abbas, A.; Huang, S.-J. ECAP effects on microstructure and mechanical behavior of annealed WS2/AZ91 metal matrix composite. J. Alloys Compd. 2020, 835, 155466. [Google Scholar] [CrossRef]
- Huang, S.-J.; Rajagopal, V.; Chen, Y.L.; Chiu, Y.-H. Improving the hydrogenation properties of AZ31-Mg alloys with different carbonaceous additives by high energy ball milling (HEBM) and equal channel angular pressing (ECAP). Int. J. Hydrogen Energy 2019, 45, 22291–22301. [Google Scholar] [CrossRef]
- Huang, S.-J.; Rajagopal, V.; Ali, A.N. Influence of the ECAP and HEBM processes and the addition of Ni catalyst on the hydrogen storage properties of AZ31-x Ni (x = 0, 2, 4) alloy. Int. J. Hydrogen Energy 2019, 44, 1047–1058. [Google Scholar] [CrossRef]
- Huang, S.J.; Abbas, A.; Ballóková, B. Effect of CNT on microstructure, dry sliding wear and compressive mechanical properties of AZ61 magnesium alloy. J. Mater. Res. Technol. 2019, 8, 4273–4286. [Google Scholar] [CrossRef]
- Huang, S.-J.; Ali, A.N. Effects of heat treatment on the microstructure and microplastic deformation behavior of SiC particles reinforced AZ61 magnesium metal matrix composite. Mater. Sci. Eng. A 2018, 711, 670–682. [Google Scholar] [CrossRef]
- Liao, H.; Chen, J.; Peng, L.; Han, J.; Yi, H.; Zheng, F.; Wu, Y.; Ding, W. Fabrication and characterization of magnesium matrix composite processed by combination of friction stir processing and high-energy ball milling. Mater. Sci. Eng. A 2017, 683, 207–214. [Google Scholar] [CrossRef]
- Máthis, K.; Farkas, G.; Garcés, G.; Gubicza, J. Evolution of dislocation density during compression of a Mg-Zn-Y alloy with long period stacking ordered structure. Mater. Lett. 2017, 190, 86–89. [Google Scholar] [CrossRef]
- Ardeljan, M.; Beyerlein, I.J.; Knezevic, M. Mechanical response, twinning, and texture evolution of WE43 magnesium-rare earth alloy as a function of strain rate: Experiments and multi-level crystal plasticity modeling. Int. J. Plast. 2017, 99, 81–101. [Google Scholar] [CrossRef]
- Pugazhenthi, A.; Dinaharan, I.; Kanagaraj, G.; Selvam, J.D.R. Predicting the effect of machining parameters on turning characteristics of AA7075/TiB 2 in situ aluminum matrix composites using empirical relationships. J. Braz. Soc. Mech. Sci. Eng. 2018, 40, 555. [Google Scholar] [CrossRef]
- Wu, C.; Shi, R.; Luo, G.; Zhang, J.; Shen, Q.; Gan, Z.; Liu, J.; Zhang, L. Influence of particulate B4C with high weight fraction on microstructure and mechanical behavior of an Al-based metal matrix composite. J. Alloys Compd. 2019, 789, 825–833. [Google Scholar] [CrossRef]
- Otto, F.; Dlouhý, A.; Somsen, C.; Bei, H.; Eggeler, G.; George, E.P. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 2013, 61, 5743–5755. [Google Scholar] [CrossRef] [Green Version]
- Gwalani, B.; Soni, V.; Lee, M.; Mantri, S.; Ren, Y.; Banerjee, R. Optimizing the coupled effects of Hall-Petch and precipitation strengthening in a Al0.3CoCrFeNi high entropy alloy. Mater. Des. 2017, 121, 254–260. [Google Scholar] [CrossRef]
- Kato, M. Hall-Petch relationship and dislocation model for deformation of ultrafine-grained and nanocrystalline metals. Mater. Trans. 2014, 55, 19–24. [Google Scholar] [CrossRef] [Green Version]
- Ashby, M. Work hardening of dispersion-hardened crystals. Philos. Mag. 1966, 14, 1157–1178. [Google Scholar] [CrossRef]
- El-Tahawy, M.; Máthis, K.; Garcés, G.; Matsumoto, T.; Yamasaki, M.; Kawamura, Y.; Gubicza, J. Type and density of dislocations in a plastically deformed long-period stacking ordered magnesium alloy. J. Alloys Compd. 2019, 771, 629–635. [Google Scholar] [CrossRef]
- Tian, C.; Li, X.; Li, H.; Guo, G.; Wang, L.; Rong, Y. The effect of porosity on the mechanical property of metal-bonded diamond grinding wheel fabricated by selective laser melting (SLM). Mater. Sci. Eng. A 2019, 743, 697–706. [Google Scholar] [CrossRef]
- Okamoto, N.L.; Fujimoto, S.; Kambara, Y.; Kawamura, M.; Chen, Z.M.; Matsunoshita, H.; Tanaka, K.; Inui, H.; George, E.P. Effects of annealing on hardness, yield strength and dislocation structure in single crystals of the equiatomic Cr-Mn-Fe-Co-Ni high entropy alloy. Sci. Rep. 2016, 6, 35863. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, J.; Huang, J.; Bei, H.; Nieh, T.-G. Grain-boundary strengthening in nanocrystalline chromium and the Hall–Petch coefficient of body-centered cubic metals. Scr. Mater. 2013, 68, 118–121. [Google Scholar] [CrossRef]
Material | YS(Exp) (MPa) | Grain Size (µm) | σ(ss) (MPa) | σ(ppt) (MPa) | σ(CTE) (MPa) | σ(Oro) (MPa) | σ(gs) = ((σEx)n − (σoth)n)1/n | ||
---|---|---|---|---|---|---|---|---|---|
n = 0.5 | n = 1 | n = 1.5 | |||||||
0-AC | 186 | 48 | - | 27 | - | 27 | 12.58 | 132 | 58.67 |
0.1-AC | 216 | 42 | 19 | 29 | 25 | 29 | 9.195 | 114 | 50.67 |
0.5-AC | 237 | 38 | 23 | 35 | 35 | 31 | 8.519 | 113 | 50.22 |
1-AC | 316 | 37 | 31 | 41 | 47 | 39 | 10.413 | 158 | 70.22 |
0-Ag | 195 | 39 | 7 | 34 | - | 31 | 10.958 | 123 | 54.67 |
0.1-Ag | 266 | 35 | 19 | 43 | 29 | 36 | 10.080 | 139 | 61.78 |
0.5-Ag | 325 | 30 | 23 | 51 | 35 | 44 | 11.317 | 172 | 76.45 |
1-Ag | 369 | 28 | 31 | 63 | 47 | 57 | 10.276 | 171 | 76 |
Materials | n = 0.5 | n = 1 | n = 1.5 | Experimental | ||||
---|---|---|---|---|---|---|---|---|
K (Slope) | σ (Intercept) | K (Slope) | σ (Intercept) | K (Slope) | σ (Intercept) | K (Slope) | σ (Intercept) | |
As-Cast | 0.0466 | 15.934 | 0.3407 | 87.154 | 0.1514 | 38.735 | 2.189 | 31.56 |
Aged | 0.0028 | 11.121 | 0.3048 | 100.06 | 0.1355 | 44.469 | 1.0712 | 108.81 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbas, A.; Huang, S.-J. Investigating the Hall-Petch Constants for As-Cast and Aged AZ61/CNTs Metal Matrix Composites and Their Role on Superposition Law Exponent. J. Compos. Sci. 2021, 5, 103. https://doi.org/10.3390/jcs5040103
Abbas A, Huang S-J. Investigating the Hall-Petch Constants for As-Cast and Aged AZ61/CNTs Metal Matrix Composites and Their Role on Superposition Law Exponent. Journal of Composites Science. 2021; 5(4):103. https://doi.org/10.3390/jcs5040103
Chicago/Turabian StyleAbbas, Aqeel, and Song-Jeng Huang. 2021. "Investigating the Hall-Petch Constants for As-Cast and Aged AZ61/CNTs Metal Matrix Composites and Their Role on Superposition Law Exponent" Journal of Composites Science 5, no. 4: 103. https://doi.org/10.3390/jcs5040103
APA StyleAbbas, A., & Huang, S. -J. (2021). Investigating the Hall-Petch Constants for As-Cast and Aged AZ61/CNTs Metal Matrix Composites and Their Role on Superposition Law Exponent. Journal of Composites Science, 5(4), 103. https://doi.org/10.3390/jcs5040103