Overmoulding of Additively Manufactured Titanium Inserts Using Polyoxymethylene (POM)—Evaluation of Bond Quality as a Function of Process Parameters
Abstract
:1. Introduction
2. Experimental Methods
2.1. Materials
2.1.1. Additively Manufactured Titanium Inserts
2.1.2. Thermoplastics Used for Overmoulding
2.2. Injection Moulding Process
2.3. Microscopy of the Interface
2.4. Peeling Test
3. Results and Discussion
3.1. Characterisation of Relevant Properties of the Base Materials
3.1.1. Roughness of Ti6Al4V
3.1.2. Mechanical Properties of POM AR10 PTFE10 and POM SLBV
3.2. Microscopy of the Interface
3.3. Peeling Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- DebRoy, T.; Wei, H.L.; Zuback, J.S.; Mukherjee, T.; Elmer, J.W.; Milewski, J.O.; Beese, A.M.; Wilson-Heid, A.; De, A.; Zhang, W. Additive manufacturing of metallic components—Process, structure and properties. Prog. Mater. Sci. 2018, 92, 112–224. [Google Scholar] [CrossRef]
- Brenne, F.; Niendorf, T.; Maier, H.J. Additively manufactured cellular structures: Impact of microstructure and local strains on the monotonic and cyclic behavior under uniaxial and bending load. J. Mater. Process. Technol. 2013, 213, 1558–1564. [Google Scholar] [CrossRef]
- Niendorf, T.; Brenne, F.; Schaper, M. Lattice Structures Manufactured by SLM: On the Effect of Geometrical Dimensions on Microstructure Evolution during Processing. Metall. Mater. Trans. B 2014, 45, 1181–1185. [Google Scholar] [CrossRef]
- Brenne, F.; Leuders, S.; Niendorf, T. On the Impact of Additive Manufacturing on Microstructural and Mechanical Properties of Stainless Steel and Ni-base Alloy. BHM 2017, 162, 199–202. [Google Scholar] [CrossRef]
- Gunther, J.; Krewerth, D.; Lippmann, T.; Leuders, S.; Troster, T.; Weidner, A.; Biermann, H.; Niendorf, T. Fatigue life of additively manufactured Ti-6Al-4V in the very high cycle fatigue regime. Int. J. Fatigue 2017, 94, 236–245. [Google Scholar] [CrossRef]
- Droste, M.; Gunther, J.; Kotzem, D.; Walther, F.; Niendorf, T.; Biermann, H. Cyclic deformation behavior of a damage tolerant CrMnNi TRIP steel produced by electron beam melting. Int. J. Fatigue 2018, 114, 262–271. [Google Scholar] [CrossRef]
- Riemer, A.; Leuders, S.; Thone, M.; Richard, H.A.; Troster, T.; Niendorf, T. On the fatigue crack growth behavior in 316L stainless steel manufactured by selective laser melting. Eng. Fract. Mech. 2014, 120, 15–25. [Google Scholar] [CrossRef]
- Brenne, F.; Niendorf, T. Damage tolerant design by microstructural gradation—Influence of processing parameters and build orientation on crack growth within additively processed 316L. Mater. Sci. Eng. A 2019, 764, 138186. [Google Scholar] [CrossRef]
- Gunther, J.; Leuders, S.; Koppa, P.; Troster, T.; Henkel, S.; Biermann, H.; Niendorf, T. On the effect of internal channels and surface roughness on the high-cycle fatigue performance of Ti-6Al-4V processed by SLM. Mater. Des. 2018, 143, 1–11. [Google Scholar] [CrossRef]
- Hitzler, L.; Merkel, M.; Hall, W.; Ochsner, A. A Review of Metal Fabricated with Laser- and Powder-Bed Based Additive Manufacturing Techniques: Process, Nomenclature, Materials, Achievable Properties, and its Utilization in the Medical Sector. Adv. Eng. Mater. 2018, 20, 1700658. [Google Scholar] [CrossRef] [Green Version]
- Denti, L.; Bassoli, E.; Gatto, A.; Santecchia, E.; Mengucci, P. Fatigue life and microstructure of additive manufactured Ti6Al4V after different finishing processes. Mater. Sci. Eng. A 2019, 755, 1–9. [Google Scholar] [CrossRef]
- Koch, C.; Richter, J.; Vollmer, M.; Kahlmeyer, M.; Niendorf, T.; Böhm, S. Adhesively bonded joints in components manufactured via selective laser melting. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 2020, 235, 518–526. [Google Scholar] [CrossRef]
- Maleki, E.; Bagherifard, S.; Bandini, M.; Guagliano, M. Surface post-treatments for metal additive manufacturing: Progress, challenges, and opportunities. Addit. Manuf. 2021, 37, 101619. [Google Scholar] [CrossRef]
- Breidenstein, B.; Brenne, F.; Wu, L.; Niendorf, T.; Denkena, B. Effect of Post-Process Machining on Surface Properties of Additively Manufactured H13 Tool Steel. HTM J. Heat Treatm. Mater. 2018, 73, 173–186. [Google Scholar] [CrossRef]
- Brandao, A.D.; Gumpinger, J.; Gschweitl, M.; Seyfert, C.; Hofbauer, P.; Ghidini, T. Fatigue Properties of Additively Manufactured AlSi10Mg-Surface Treatment Effect. FDMD 2017, 7, 58–66. [Google Scholar] [CrossRef]
- Kaynak, Y.; Kitay, O. The effect of post-processing operations on surface characteristics of 316L stainless steel produced by selective laser melting. Addit. Manuf. 2019, 26, 84–93. [Google Scholar] [CrossRef]
- Harris, K.L.; Pitenis, A.A.; Angela, A.; Sawyer, W.G.; Krick, B.A.; Blackman, G.S.; Kasprzak, D.J.; Junk, C.P. PTFE Tribology and the Role of Mechanochemistry in the Development of Protective Surface Films. Macromulecules 2015, 40, 3739–3745. [Google Scholar] [CrossRef]
- Lim, W.S.; Khadem, M.; Anle, Y.; Kim, D.E. Fabrication of polytetrafluoroethylene-carbon nanotube composite coatings for friction and wear reduction. Polym. Compos. 2018, 39, E710–E722. [Google Scholar] [CrossRef]
- Yan, C.; Hao, L.; Hussein, A.; Wei, Q.; Shi, Y. Microstructural and surface modifications and hydroxyapatite coating of Ti-6Al-4V triply periodic minimal surface lattices fabricated by selective laser melting. Mater. Sci. Eng. C 2017, 75, 1515–1524. [Google Scholar] [CrossRef]
- Kokubo, T. Formation of biologically active bone-like apatite on metals and polymers by a biomimetic process. Thermochim. Acta 1996, 280, 479–490. [Google Scholar] [CrossRef]
- Croes, M.; Bakhshandeh, S.; van Hengel, I.A.J.; Lietaert, K.; van Kessel, K.P.M.; Pouran, B.; van der Wal, B.C.H.; Vogely, H.C.; Van Hecke, W.; Fluit, A.C.; et al. Antibacterial and immunogenic behavior of silver coatings on additively manufactured porous titanium. Acta Biomater. 2018, 81, 315–327. [Google Scholar] [CrossRef]
- Enrique, P.D.; Marzbanrad, E.; Mahmoodkhani, Y.; Jiao, Z.; Toyserkani, E.; Zhou, N.Y. Surface modification of binder-jet additive manufactured Inconel 625 via electrospark deposition. Surf. Coat. Technol. 2019, 362, 141–149. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, J.; Sagar, S.; Dube, T.; Kim, B.-G.; Jung, Y.-G.; Koo, D.D.; Jones, A.; Zhang, J. Molecular dynamics modeling of mechanical and tribological properties of additively manufactured AlCoCrFe high entropy alloy coating on aluminum substrate. Mater. Chem. Phys. 2021, 263, 124341. [Google Scholar] [CrossRef]
- Fielden-Stewart, Z.; Coope, T.; Bacheva, D.; Kim, B.C. Effect of the surface morphology of SLM printed aluminium on the interfacial fracture toughness of metal-composite hybrid joints. Int. J. Adhes. Adhes. 2021, 105, 102779. [Google Scholar] [CrossRef]
- Hertle, S.; Kleffel, T.; Worz, A.; Drummer, D. Production of polymer-metal hybrids using extrusion-based additive manufacturing and electrochemically treated aluminum. Addit. Manuf. 2020, 33, 101135. [Google Scholar] [CrossRef]
- Drummer, D.; Schmachtenberg, E.; Hülder, G.; Meister, S. MK2—A novel assembly injection molding process for the combination of functional metal surfaces with polymer structures. J. Mater. Process. Technol. 2010, 210, 1852–1857. [Google Scholar] [CrossRef]
- Schuberth, A.; Göring, M.; Lindner, T.; Töberling, G.; Puschmann, M.; Riedel, F.; Scharf, I.; Schreiter, K.; Spange, S.; Lampke, T. Effect of new adhesion promoter and mechanical interlocking on bonding strength in metal-polymer composites. IOP Conf. Ser. Mater. Sci. Eng. 2016, 11, 012041. [Google Scholar] [CrossRef]
- Thoppul, S.D.; Finegan, J.; Gibson, R.F. Mechanics of mechanically fastened joints in polymer-matrix composite structures—A review. Compos. Sci. Technol. 2009, 69, 301–329. [Google Scholar] [CrossRef]
- Kaiser, W. Kunststoffchemie für Ingenieure. Von der Synthese bis zur Anwendung, 5th ed.; Carl Hanser: Munich, Germany, 2021. [Google Scholar]
- Gebauer, J.; Fischer, M.; Lasagni, A.F.; Kuhnert, I.; Klotzbach, A. Laser structured surfaces for metal-plastic hybrid joined by injection molding. J. Laser Appl. 2018, 30, 032021. [Google Scholar] [CrossRef]
- Bergmann, J.P.; Stambke, M. Potential of laser-manufacturd polymer-metal hybrid joints. Phys. Procedia 2012, 39, 84–91. [Google Scholar] [CrossRef] [Green Version]
- Kleffel, T.; Drummer, D. Investigating the suitability of roughness parameters to assess the bond strength of polymer-metal hybrid structures with mechanical adhesion. Compos. B Eng. 2017, 117, 20–25. [Google Scholar] [CrossRef]
- Lucchetta, G.; Marinello, F.; Bariani, P.F. Aluminum sheet surface roughness correlation with adhesion in polymer metal hybrid overmolding. CIRP Ann. 2011, 60, 559–562. [Google Scholar] [CrossRef]
- Arcam EMB. Arcam Titanium Ti6AL4V ELI. Available online: http://www.arcam.com/wp-content/uploads/Arcam-Ti6Al4V-ELI-Titanium-Alloy.pdf (accessed on 18 October 2018).
- Lu, S.L.; Qian, M.; Tang, H.P.; Yan, M.; Wang, J.; StJohn, D.H. Massive transformation in Ti-6Al-4V additively manufactured by selective electron beam melting. Acta Mater. 2016, 104, 303–311. [Google Scholar] [CrossRef]
- Sidambe, A.T. Three-dimensional surface topography characterization of the electron beam melted Ti6Al4V. Met. Powder Rep. 2017, 72, 200–205. [Google Scholar] [CrossRef]
- Weißmann, V.; Drescher, P.; Seitz, H.; Hansmann, H.; Bader, R.; Seyfarth, A.; Klinder, A.; Jonitz-Heincke, A. Effects of Build Orientation on Surface Morphology and Bone Cell Activity of Additively Manufactured Ti6Al4V Specimens. Materials 2018, 11, 915. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Sin, W.J.; Nai, M.L.S.; Wei, J. Effects of Processing Parameters on Surface Roughness of Additive Manufactured Ti-6Al-4V via Electron Beam Melting. Materials 2017, 10, 1121. [Google Scholar] [CrossRef] [Green Version]
- Safdar, A.; He, H.Z.; Wei, L.Y.; Snis, A.; de Paz, L.E.C. Effect of process parameters settings and thickness on surface roughness of EBM produced Ti-6Al-4V. Rapid Prototyp. J. 2012, 18, 401–408. [Google Scholar] [CrossRef]
- Li, X.; Liu, F.; Gong, N.; Huang, P.; Yang, C. Enhancing the joining strength of injection-molded polymer-metal hybrids by rapid heating and cooling. J. Mater. Process. Technol. 2017, 249, 386–393. [Google Scholar] [CrossRef]
- VDI-Fachbereich Kunststofftechnik. VDI-Fachbereich Kunststofftechnik. VDI 2019 Testing the adhesion of thermoplastic elastomers (TPE) on substrates. In VDI Manual Plastics Technology; VDI Society Materials Engineering, Ed.; Beuth: Berlin, Germany, 2016; p. 15. [Google Scholar]
- Ehrenstein, G.W.; Kopczynska, A.; Caseri, W.; Schirle, M.; Hennemann, O.-D. Kleben. In Handbuch Kunststoff-Verbindungstechnik; Ehrenstein, G.W., Ed.; Carl Hanser: Munich, Germany, 2004; pp. 426–516. [Google Scholar]
- Rafi, H.K.; Karthik, N.V.; Gong, H.J.; Starr, T.L.; Stucker, B.E. Microstructures and Mechanical Properties of Ti6Al4V Parts Fabricated by Selective Laser Melting and Electron Beam Melting. J. Mater. Eng. Perform. 2013, 22, 3872–3883. [Google Scholar] [CrossRef]
- Ge, W.; Han, S.; Fang, Y.C.; Cheon, J.; Na, S.J. Mechanism of surface morphology in electron beam melting of Ti6Al4V based on computational flow patterns. Appl. Surf. Sci. 2017, 419, 150–158. [Google Scholar] [CrossRef]
- Majeed, A.; Ahmed, A.; Salam, A.; Sheikh, M.Z. Surface quality improvement by parameters analysis, optimization and heat treatment of AlSi10Mg parts manufactured by SLM additive manufacturing. Int. J. Lightweight Mater. Manuf. 2019, 2, 288–295. [Google Scholar] [CrossRef]
- Koutiri, I.; Pessard, E.; Peyre, P.; Amlou, O.; De Terris, T. Influence of SLM process parameters on the surface finish, porosity rate and fatigue behavior of as-built Inconel 625 parts. J. Mater. Process. Technol. 2018, 255, 536–546. [Google Scholar] [CrossRef]
- Dursun, G.; Ibekwe, S.; Li, G.Q.; Mensah, P.; Joshi, G.; Jerro, D. Influence of laser processing parameters on the surface characteristics of 316L stainless steel manufactured by selective laser melting. Mater. Today 2020, 26, 387–393. [Google Scholar] [CrossRef]
- Rashid, R.A.R.; Ali, H.; Palanisamy, S.; Masood, S.H. Effect of process parameters on the surface characteristics of AlSi12 samples made via Selective Laser Melting. Mater. Today 2017, 4, 8724–8730. [Google Scholar] [CrossRef]
- Razavi, S.M.J.; Van Hooreweder, B.; Berto, F. Effect of build thickness and geometry on quasi-static and fatigue behavior of Ti-6Al-4V produced by Electron Beam Melting. Addit. Manuf. 2020, 36, 101426. [Google Scholar] [CrossRef]
- Strano, G.; Hao, L.; Everson, R.M.; Evans, K.E. Surface roughness analysis, modelling and prediction in selective laser melting. J. Mater. Process. Technol. 2013, 213, 589–597. [Google Scholar] [CrossRef]
- Kranz, J.; Herzog, D.; Emmelmann, C. Design guidelines for laser additive manufacturing of lightweight structures in TiAl6V4. J. Laser Appl. 2015, 27, S14001. [Google Scholar] [CrossRef]
- Rubino, F.; Scherillo, F.; Franchitti, S.; Squillace, A.; Astarita, A.; Carlone, P. Microstructure and surface analysis of friction stir processed Ti-6Al-4V plates manufactured by electron beam melting. J. Manuf. Process. 2019, 37, 392–401. [Google Scholar] [CrossRef]
- Spitaels, L.; Ducobu, F.; Demarbaix, A.; Rivière-Lorphèvre, E.; Dehombreux, P. Influence of Conventional Machining on Chemical Finishing of Ti6Al4V Electron Beam Melting Parts. Procedia Manuf. 2020, 47, 1036–1042. [Google Scholar] [CrossRef]
- Osswald, T.A.; Menges, G. Materials Science of Polymers for Engineers, 3rd ed.; Carl Hanser: Munich, Germany, 2012. [Google Scholar]
- Ramani, K.; Moriarty, B. Thermoplastic Bonding to Metals via Injection Molding for Macro-Composite Manufacture. Polym. Eng. Sci. 1998, 38, 870–877. [Google Scholar] [CrossRef]
Al | V | C | Fe | O | N | H | Ti |
---|---|---|---|---|---|---|---|
6.0% | 4.0% | 0.03% | 0.1% | 0.10% | 0.01% | <0.003% | Bal. |
Thermoplastic Material | Test Temperature/Test Load | |||
---|---|---|---|---|
220 °C/2.16 kg | 230 °C/2.16 kg | |||
MFR (g/10 min) | Standard Deviation (g/10 min) | MFR (g/10 min) | Standard Deviation (g/10 min) | |
POM AR10 PTFE10 | 7.68 | 0.0804 | 10.56 | 0.1609 |
POM SLBV | 11.93 | 0.0420 | 15.24 | 0.0565 |
Thermoplastic Material | Mould Temperature | Feeding Section | Zone 1 | Zone 2 | Zone 3 | Zone 4 | Zone 5 |
---|---|---|---|---|---|---|---|
POM AR10 PTFE10 | 100 °C | 50 °C | 210 °C | 215 °C | 220 °C | 225 °C | 230 °C |
POM SLBV | 100 °C | 50 °C | 200 °C | 205 °C | 210 °C | 215 °C | 220 °C |
Injection | Phase 1 | ||||||
Rate | Pressure | ||||||
(cm3/s) | (bar) | ||||||
40 | 900 | ||||||
Holding | Phase 1 | Phase 2 | |||||
Rate | Pressure | Time | Rate | Pressure | Time | ||
(cm3/s) | (bar) | (s) | (cm3/s) | (bar) | (s) | ||
50 | 700 | 0.5 | 50 | 700 | 15 |
Thermo-Plastic Material | Number of Samples | Test Speed | Mean Value | Tensile Modulus | Maximum Stress | Maximum Strain | Stress at Break | Strain at Break |
---|---|---|---|---|---|---|---|---|
Standard Deviation | ||||||||
(–) | (mm/min) | (MPa) | (MPa) | (%) | (MPa) | (%) | ||
POM AR10 PTFE10 | n = 5 | 5 | x | 2571.0 | 38.9 | 8.8 | 38.7 | 11.4 |
s | 26.54 | 0.22 | 0.34 | 0.25 | 1.32 | |||
n = 5 | 10 | x | 2571.7 | 39.9 | 9.0 | 39.7 | 12.1 | |
s | 16.28 | 0.19 | 0.47 | 0.20 | 1.17 | |||
POM SLBV | n = 5 | 5 | x | 2617.4 | 55.7 | 9.8 | 51.5 | 32.6 |
s | 16.78 | 0.18 | 0.32 | 1.01 | 7.65 | |||
n = 5 | 10 | x | 2623.7 | 56.5 | 10.4 | 52.4 | 34.9 | |
s | 11.06 | 0.21 | 0.29 | 1.22 | 7.86 |
Thermo-Plastic Material | Number of Samples | Test Speed | Mean Value | Flexural Modulus | Maximum Stress | Maximum Strain | Stress at Break | Strain at Break |
---|---|---|---|---|---|---|---|---|
Standard Deviation | ||||||||
(–) | (mm/min) | (MPa) | (MPa) | (%) | (MPa) | (%) | ||
POM AR10 PTFE10 | n = 5 | 5 | x | 2180.7 | 65.0 | 6.7 | 56.9 | 11.0 |
s | 56.27 | 0.85 | 0.08 | 2.05 | 0.49 | |||
n = 5 | 10 | x | 2144.7 | 65.8 | 6.8 | 55.3 | 11.9 | |
s | 41.48 | 0.62 | 0.04 | 1.81 | 0.49 | |||
POM SLBV | n = 5 | 5 | x | 2188.1 | 79.9 | 7.4 | 70.9 | 11.4 |
s | 34.52 | 0.51 | 0.07 | 0.94 | 0.18 | |||
n = 5 | 10 | x | 2220.8 | 81.6 | 7.5 | 73.5 | 11.1 | |
s | 11.62 | 1.07 | 0.03 | 0.96 | 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liese, T.; Richter, J.; Niendorf, T.; Ries, A. Overmoulding of Additively Manufactured Titanium Inserts Using Polyoxymethylene (POM)—Evaluation of Bond Quality as a Function of Process Parameters. J. Compos. Sci. 2021, 5, 159. https://doi.org/10.3390/jcs5060159
Liese T, Richter J, Niendorf T, Ries A. Overmoulding of Additively Manufactured Titanium Inserts Using Polyoxymethylene (POM)—Evaluation of Bond Quality as a Function of Process Parameters. Journal of Composites Science. 2021; 5(6):159. https://doi.org/10.3390/jcs5060159
Chicago/Turabian StyleLiese, Teresa, Julia Richter, Thomas Niendorf, and Angela Ries. 2021. "Overmoulding of Additively Manufactured Titanium Inserts Using Polyoxymethylene (POM)—Evaluation of Bond Quality as a Function of Process Parameters" Journal of Composites Science 5, no. 6: 159. https://doi.org/10.3390/jcs5060159
APA StyleLiese, T., Richter, J., Niendorf, T., & Ries, A. (2021). Overmoulding of Additively Manufactured Titanium Inserts Using Polyoxymethylene (POM)—Evaluation of Bond Quality as a Function of Process Parameters. Journal of Composites Science, 5(6), 159. https://doi.org/10.3390/jcs5060159