Influence of Transition Metals (Cu and Co) on the Carbon-Coated Nickel Sulfide Used as Positive Electrode Material in Hybrid Supercapacitor Device
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Electrode Materials
2.3. Structural Characterization of the Materials
2.4. Electrochemical Characterization
2.5. Calculation
3. Results and Discussion
3.1. PXRD Pattern Analysis
3.2. FE-SEM and HR-TEM Images Analysis
3.3. Raman Spectra Analysis
3.4. FT-IR Spectra Analysis
3.5. UV-Visible Spectroscopy Analysis
3.6. Electrical Conductivity Analysis
3.7. Electrochemical Characterization of Electrodes
3.8. Electrochemical Characterization of the Fabricated Hybrid Supercapacitor (HSC) Device
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tavakoli, F.; Rezaei, B.; Jahromi, A.R.T.; Ensafi, A.A. Facile Synthesis of Yolk-Shelled CuCo2Se4 Microspheres as a Novel Electrode Material for Supercapacitor Application. ACS Appl. Mater. Interfaces 2019, 12, 418–427. [Google Scholar] [CrossRef]
- Zhang, M.; Fan, H.; Gao, Y.; Zhao, N.; Wang, C.; Ma, J.; Ma, L.; Yadav, A.K.; Wang, W.; Lee, W.S.V.; et al. Preaddition of Cations to Electrolytes for Aqueous 2.2 V High Voltage Hybrid Supercapacitor with Superlong Cycling Life and Its Energy Storage Mechanism. ACS Appl. Mater. Interfaces 2020, 12, 17659–17668. [Google Scholar] [CrossRef]
- Jiang, L.; Dong, M.; Dou, Y.; Chen, S.; Liu, P.; Yin, H.; Zhao, H. Manganese oxides transformed from orthorhombic phase to birnessite with enhanced electrochemical performance as supercapacitor electrodes. J. Mater. Chem. A 2020, 8, 3746–3753. [Google Scholar] [CrossRef]
- Luo, X.; Yang, Q.; Dong, Y.; Huang, X.; Kong, D.; Wang, B.; Liu, H.; Xiao, Z.; Zhi, L. Maximizing pore and heteroatom utilization within N,P-co-doped polypyrrole-derived carbon nanotubes for high-performance supercapacitors. J. Mater. Chem. A 2020, 8, 17558–17567. [Google Scholar] [CrossRef]
- Ma, Z.; Sun, Z.; Jiang, H.; Li, F.; Wang, Q.; Qu, F. Nanoporouselectrospun NiCo2S4 embedded in carbon fiber as an excellent electrode for high-rate supercapacitors. Appl. Surf. Sci. 2020, 533, 147521. [Google Scholar] [CrossRef]
- Yuan, Z.; Wang, H.; Shen, J.; Ye, P.; Ning, J.; Zhong, Y.; Hu, Y. Hierarchical Cu2S@NiCo-LDH double-shelled nanotube arrays with enhanced electrochemical performance for hybrid supercapacitors. J. Mater. Chem. A 2020, 8, 22163–22174. [Google Scholar] [CrossRef]
- Cho, J.; Yun, Y.T.; Noh, Y.H.; Baek, H.S.; Nam, M.; Kim, B.; Moon, C.H.; Ko, D. Semitransparent Energy-Storing Functional Photovoltaics Monolithically Integrated with ElectrochromicSupercapacitors. Adv. Funct. Mater. 2020, 30, 1909601. [Google Scholar] [CrossRef]
- Sun, Y.; Du, X.; Zhang, J.; Huang, N.; Yang, L.; Sun, X. Microwave-Assisted preparation and improvement mechanism of carbon nanotube@NiMn2O4 core-shell nanocomposite for high performance asymmetric supercapacitors. J. Power Sources 2020, 473, 228609–228620. [Google Scholar] [CrossRef]
- Wan, C.; Tian, W.; Zhou, J.; Qing, Y.; Huang, Q.; Li, X.; Wei, S.; Zhang, L.; Liu, X.; Wu, Y. Green anisotropic carbon-stabilized polylaminate copper oxide as a novel cathode for high-performance hybrid supercapacitors. Mater. Des. 2021, 198, 109309. [Google Scholar] [CrossRef]
- Kanga, N.K.; Kim, H.I.; Ramadoss, A.; Kim, S.; Yoon, C.J.; Jang, H.J. Ultrathin Nickel Hydroxide on Carbon Coated 3D-Porous Copper Structures for High Performance Supercapacitors. Phys. Chem. Chem. Phys. 2018, 20, 719–727. [Google Scholar] [CrossRef]
- Ramadoss, A.; Kang, N.K.; Ahn, J.H.; Kim, S.; Ryu, T.S.; Jang, H.J. Realization of High Performance Flexible wire Supercapacitors Based on 3-Dimensional NiCo2O4/ Ni fibers. J. Mater. Chem. A 2016, 4, 4718–4727. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Samanta, P.; Samanta, P.; Murmu, C.N.; Kuila, T. Investigation of Electrochemical Charge Storage Efficiency of NiCo2Se4/RGO Composites Derived at Varied Duration and Its Asymmetric Supercapacitor Device. Energy Fuels 2020, 34, 13056−13066. [Google Scholar] [CrossRef]
- Kang, L.; Zhang, M.; Zhang, J.; Liu, S.; Zhang, N.; Yao, W.; Ye, Y.; Luo, C.; Gong, Z.; Wang, C.; et al. Dual-Defect surface engineering of bimetallic sulfide nanotubes towards flexible asymmetric solid-state supercapacitors. J. Mater. Chem. A 2020, 8, 24053–24064. [Google Scholar] [CrossRef]
- Guan, Y.B.; Yu, L.; Wang, X.; Song, S.; Lou, X.W. Formation of Onion-Like NiCo2S4 Particles via Sequential Ion-Exchange for Hybrid Supercapacitors. Adv. Mater. 2017, 29, 1605051. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Zhang, L.; Wu, B.H.; Lou, X.W. Formation of NixCo3xS4 Hollow Nanoprisms with Enhanced Pseudocapacitive Properties. Angew. Chem. Int. Ed. 2014, 53, 3711–3714. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Xu, Y.; Zhu, K.; Bian, K.; Wang, J.; Sun, X.; Gao, Y.; Luo, H.; Lu, L.; Liu, J. Ultrathin VO 2 nanosheets self-assembled into 3D micro/nano-structured hierarchical porous sponge-like micro-bundles for long-life and high-rate Li-ion batteries. J. Mater. Chem. A 2017, 5, 8307–8316. [Google Scholar] [CrossRef]
- Huang, T.; Song, Z.X.; Chen, X.; Chen, L.X.; Sun, F.F.; Su, F.Q.; Li, D.L.; Tan, Z. Carbon coated nickel-cobalt bimetallic sulfides hollow dodecahedrons for supercapacitor with enhanced electrochemical performance. N. J. Chem. 2018, 42, 5128–5134. [Google Scholar] [CrossRef]
- Lin, J.; Liu, Y.; Wang, Y.; Jia, H.; Chen, S.; Qi, J.; Qu, C.; Cao, J.; Fei, W.; Feng, J. Rational construction of nickel cobalt sulfide nanoflakes on CoOnanosheets with the help of carbon layer as the battery-like electrode for supercapacitors. J. Power Sources 2017, 362, 64–72. [Google Scholar] [CrossRef]
- Ghosh, S.; Kumar, S.J.; Murmu, C.N.; Ganesh, S.R.; Inokawa, H.; Kuila, T. Development of carbon coated NiS2 as positive electrode material for high performance asymmetric supercapacitor. Compos. B. Eng. 2019, 177, 107373. [Google Scholar] [CrossRef]
- Vu, T.T.; Park, S.; Park, J.; Kim, S.; Mathew, V.; Alfaruqi, M.H.; Kim, K.-H.; Sun, Y.-K.; Hwang, J.-Y.; Kim, J. Investigation of superior sodium storage and reversible Na2S conversion reactions in a porous NiS2@C composite using in operando X-ray diffraction. J. Mater. Chem. A 2020, 8, 24401–24407. [Google Scholar] [CrossRef]
- Saranya, M.; Grace, N.A. Hydrothermal Synthesis of CuS Nanostructures with Different Morphology. J. Nano Res. 2012, 18, 43–51. [Google Scholar] [CrossRef]
- Zhang, H.T.; Wu, G.; Chen, X.H. Controlled synthesis and characterization of covellite (CuS) nanoflakes. Mater. Chem. Phys. 2006, 98, 298–303. [Google Scholar] [CrossRef]
- Rani, J.B.; Kanjana, P.A.; Ravi, G.; Yuvakkumar, R.; Aravanakumar, B. Superior electrochemical water oxidation of novel NiS@FeSnanocomposites. Mater. Sci. Semicond. Process. 2019, 101, 174–182. [Google Scholar] [CrossRef]
- Zhu, Y.; Wu, Z.; Jing, M.; Yang, X.; Song, W.; Ji, X. Mesoporous NiCo2S4 nanoparticles as high-performance electrode materials for supercapacitors. J. Power Sources 2015, 273, 584–590. [Google Scholar] [CrossRef]
- Li, D.; Gong, Y.; Pan, C. Facile synthesis of hybrid CNTs/NiCo2S4 composite for high performance supercapacitors. Sci. Rep. 2016, 6, 29788. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Z.; Jiao, Y.; Yang, H.; Li, Y.; Zhang, J.; Gao, P. The graphene/lanthanum oxide nanocomposites as electrode materials of supercapacitors. J. Power Sources 2019, 419, 99–105. [Google Scholar] [CrossRef]
- Chhetri, S.; Samanta, P.; Murmu, C.N.; Kuila, T. Anticorrosion Properties of Epoxy Composite Coating Reinforced by Molybdate-Intercalated Functionalized Layered Double Hydroxide. J. Compos. Sci. 2019, 3, 11. [Google Scholar] [CrossRef] [Green Version]
- Reddy, P.L.; Deshmukh, K.; Kovářík, T.; Reiger, D.; Nambiraj, N.; Lakshmipathy, R.; Pasha, S.K. Enhanced dielectric properties of green synthesized Nickel Sulphide (NiS) nanoparticles integrated polyvinylalcoholnanocomposites. Mater. Res. Express 2020, 7, 064007. [Google Scholar] [CrossRef]
- Srivastava, M.; Elias Uddin, M.; Singh, J.; Kim, H.N.; Lee, H.J. Preparation and characterization of self-assembled layer by layer NiCo2O4–reduced graphene oxide nanocomposite with improved electrocatalytic properties. J. Alloys Compd. 2014, 590, 266–276. [Google Scholar] [CrossRef]
- Chen, H.; Jiang, J.; Zhang, L.; Wan, H.; Qi, T.; Xia, D. Highly conductive NiCo2S4 urchin-like nanostructures for high-rate pseudocapacitors. Nanoscale 2013, 5, 8879–8883. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.; Jana, M.; Khanra, P.; Samanta, P.; Koo, H.; Murmu, N.C.; Kuila, T. Band Gap Engineering of Boron Nitride by Graphene and Its Application as Positive Electrode Material in Asymmetric Supercapacitor Device. ACS Appl. Mater. Interfaces 2015, 7, 14211–14222. [Google Scholar] [CrossRef]
- Jana, M.; Kumar, S.J.; Khanra, P.; Samanta, P.; Koo, H.; Murmu, C.N.; Kuila, T. Superior performance of asymmetric supercapacitor based on reduced graphene oxide manganese carbonate as positive and Sonochemically reduced graphene oxide as negative electrode materials. J. Power Sources 2016, 303, 222–233. [Google Scholar] [CrossRef]
- Vaghasiya, J.V.; Mayorga-Martinez, C.C.; Vyskočil, J.; Sofer, Z.; Pumera, M. Integrated Biomonitoring Sensing with Wearable Asymmetric Supercapacitors Based on Ti 3 C 2 MXene and 1T-Phase WS 2 Nanosheets. Adv. Funct. Mater. 2020, 30, 2003673. [Google Scholar] [CrossRef]
- Tseng, A.C.; Sahoo, K.P.; Lee, P.C.; Lin, T.Y.; Xu, H.J.; Chen, T.Y. Synthesis of CoO-Decorated Graphene Hollow Nanoballs for High-Performance Flexible Supercapacitors. ACS Appl. Mater. Interfaces 2020, 12, 40426–40432. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ma, M.; Yang, J.; Sun, C.; Su, H.; Huang, W.; Dong, X. Shape-controlled synthesis of NiCo2S4and their charge storage characteristics in supercapacitors. Nanoscale 2014, 6, 9824–9830. [Google Scholar] [CrossRef] [PubMed]
- Du, W.; Wang, Z.; Zhu, Z.; Hu, S.; Zhu, X.; Shi, Y.; Pang, H.; Qian, X. Facile synthesis and superior electrochemical performances of CoNi2S4/graphenenanocomposite suitable for supercapacitor electrodes. J. Mater. Chem. A 2014, 2, 9613–9619. [Google Scholar] [CrossRef]
- Sivakumar, P.; Jana, M.; Nakhanivej, P.; Jung, M.G.; Raj, C.J.; Park, H.S. Interconnected network-like single crystalline bimetallic carbonate hydroxide nanowires for high performance hybrid supercapacitors. Int. J. Energy Res. 2021, 45, 3064–3074. [Google Scholar] [CrossRef]
- Li, Z.; He, S.; Ji, C.; Mi, H.; Lei, C.; Li, Z.; Pang, H.; Fan, Z.; Yu, C.; Qiu, J. Hierarchical Bimetallic Hydroxides Built by Porous Nanowire-Lapped Bundles with Ultrahigh Areal Capacity for Stable Hybrid Solid-State Supercapacitors. Adv. Mater. Interfaces 2019, 6, 1900959. [Google Scholar] [CrossRef]
Composite | Rs (Ω) | CPE-T (S−n) | CPE-P (n) | Rct (Ω) | W-R (Ω) | W-T (s) | W-P |
---|---|---|---|---|---|---|---|
NSC | 1.2 | 0.0015 | 0.75 | 30 | 120 | 0.045 | 0.32 |
NCuSC | 1.4 | 0.0015 | 0.85 | 15 | 118 | 0.055 | 0.35 |
NCoSC | 1.5 | 0.0035 | 0.65 | 10 | 90 | 0.26 | 0.37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghosh, S.; Paul, A.; Samanta, P.; Landge, B.; Mandal, S.K.; Sinha, S.; Dutta, G.G.; Murmu, N.C.; Kuila, T. Influence of Transition Metals (Cu and Co) on the Carbon-Coated Nickel Sulfide Used as Positive Electrode Material in Hybrid Supercapacitor Device. J. Compos. Sci. 2021, 5, 180. https://doi.org/10.3390/jcs5070180
Ghosh S, Paul A, Samanta P, Landge B, Mandal SK, Sinha S, Dutta GG, Murmu NC, Kuila T. Influence of Transition Metals (Cu and Co) on the Carbon-Coated Nickel Sulfide Used as Positive Electrode Material in Hybrid Supercapacitor Device. Journal of Composites Science. 2021; 5(7):180. https://doi.org/10.3390/jcs5070180
Chicago/Turabian StyleGhosh, Souvik, Aparna Paul, Prakas Samanta, Bhau Landge, Sanjib Kumar Mandal, Sangam Sinha, Gour Gopal Dutta, Naresh Chandra Murmu, and Tapas Kuila. 2021. "Influence of Transition Metals (Cu and Co) on the Carbon-Coated Nickel Sulfide Used as Positive Electrode Material in Hybrid Supercapacitor Device" Journal of Composites Science 5, no. 7: 180. https://doi.org/10.3390/jcs5070180
APA StyleGhosh, S., Paul, A., Samanta, P., Landge, B., Mandal, S. K., Sinha, S., Dutta, G. G., Murmu, N. C., & Kuila, T. (2021). Influence of Transition Metals (Cu and Co) on the Carbon-Coated Nickel Sulfide Used as Positive Electrode Material in Hybrid Supercapacitor Device. Journal of Composites Science, 5(7), 180. https://doi.org/10.3390/jcs5070180