Synthesis and Characterizations of Barium Zirconate–Alkali Carbonate Composite Electrolytes for Intermediate Temperature Fuel Cells
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. X-ray Diffraction and Composite Microstructure
3.2. Electrical Conductivity of BZY–Carbonate Composite Electrolytes
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shi, H.; Su, C.; Ran, R.; Cao, J.; Shao, Z. Electrolyte materials for intermediate-temperature solid oxide fuel cells. Prog. Nat. Sci. Mater. Int. 2020, 30, 764–774. [Google Scholar] [CrossRef]
- Gao, Z.; Mogni, L.V.; Miller, E.C.; Railsback, J.G.; Barnett, S. A perspective on low-temperature solid oxide fuel cells. Energy Environ. Sci. 2016, 9, 1602–1644. [Google Scholar] [CrossRef]
- Fan, L.; Wang, C.; Chen, M.; Zhu, B. Recent development of ceria-based (nano)composite materials for low temperature ceramic fuel cells and electrolyte-free fuel cells. J. Power Sources 2013, 234, 154–174. [Google Scholar] [CrossRef]
- Khan, I.; Asghar, M.I.; Lund, P.D. High conductive (LiNaK)2CO3 Ce0.85Sm0.15O2 electrolyte compositions for IT-SOFC applications. Int. J. Hydrogen Energy 2017, 42, 20904–20909. [Google Scholar] [CrossRef]
- Zhu, B.; Albinsson, I.; Anderson, C.; Borsand, K.; Nilsson, M.; Mellander, B. Electrolysis studies based on ceria-based composites. Electrochem. Commun. 2006, 8, 495–498. [Google Scholar] [CrossRef]
- Patricio, S.G.; Papaioannou, E.; Zhang, G.; Metcalfe, I.S.; Marques, F.M.B. High performance composite CO2 separation membranes. J. Membr. Sci. 2014, 472, 211–218. [Google Scholar] [CrossRef] [Green Version]
- Zhu, B.; Fan, L.; Lund, P. Breakthrough fuel cell technology using ceria-based multi-functional nanocomposites. Appl. Energy 2013, 106, 163–175. [Google Scholar] [CrossRef]
- Wang, X.; Ma, Y.; Zhu, B. State of the art ceria-carbonate composites (3C) electrolyte for advanced low temperature ceramic fuel cells (LTCFCs). Int. J. Hydrogen Energy 2012, 37, 19417–19425. [Google Scholar] [CrossRef]
- Näfe, H. Cause of “Multi-Ionic Conduction” and “Ionic Conductivity Enhancement” in Carbonate-Based Composite Electrolytes. Electrochim. Acta 2017, 248, 250–257. [Google Scholar] [CrossRef]
- Xiong, X.; Lei, X.; Wang, J.; Huang, K. Synergetic proton conduction in BaZr0.8Y0.2O3 -δ–carbonate composite electrolyte for intermediate-temperature solid oxide fuel cells. Solid State Ion. 2015, 279, 66–71. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Xu, N.; Zhang, L.; Huang, K. Combining proton conductor BaZr0.8Y0.2O3-δ with carbonate: Promoted densification and enhanced proton conductivity. Electrochem. Commun. 2011, 13, 694–697. [Google Scholar] [CrossRef]
- Hei, Y.; Huang, J.; Wang, C.; Mao, Z. Novel doped barium cerate–carbonate composite electrolyte material for low temperature solid oxide fuel cells. Int. J. Hydrogen Energy 2014, 9, 14328–14333. [Google Scholar] [CrossRef]
- Katahira, K.; Kohchi, Y.; Shimura, T.; Iwahara, H. Protonic conduction in Zr-substituted BaCeO3. Solid State Ion. 2000, 138, 91–98. [Google Scholar] [CrossRef]
- Park, K.Y.; Seo, Y.; Kim, K.B.; Song, S.J.; Park, B.; Park, J. Enhanced proton conductivity of yttrium-doped barium zirconate with sinterability in protonic ceramic fuel cells. J. Alloys Compd. 2015, 639, 435–444. [Google Scholar] [CrossRef]
- Khan, I.; Tiwari, P.; Basu, S. Development of melt infiltrated gadolinium doped ceria- carbonate composite electrolytes for intermediate temperature solid oxide fuel cells. Electrochim. Acta 2019, 294, 1–10. [Google Scholar] [CrossRef]
- Benamira, M.; Ringuedé, A.; Hildebrandt, L.; Lagergren, C.; Vannier, R.N.; Cassir, M. Gadolinia-doped ceria mixed with alkali carbonates for SOFC applications: II—An electrochemical insight. Int. J. Hydrogen Energy 2012, 37, 19371–19379. [Google Scholar] [CrossRef]
- Zhu, B.J. Functional ceria–salt-composite materials for advanced ITSOFC applications. Power Sources 2003, 114, 1–9. [Google Scholar] [CrossRef]
- Zhu, B. Next generation fuel cell R&D. Int. J. Energy Res. 2006, 30, 895–903. [Google Scholar]
Systems | Composition mol%. | Melting Temperature °C. | ||
---|---|---|---|---|
Li2CO3 | K2CO3 | Na2CO3 | ||
Li2CO3-K2CO3 | 62 | 38 | - | 488 |
Li2CO3-Na2CO3 | 52 | - | 48 | 501 |
Li2CO3-K2CO3-Na2CO3 | 43.5 | 25 | 31.5 | 397 |
BZY–LN30 | BZY–LK30 | BZY–LKN30 | BZY–LKN20 | BZY–LKN40 | |
---|---|---|---|---|---|
Atmosphere | air/H2 | air/H2 | Air/H2 | air | air |
Ea HT (eV) | 0.15/0.18 | 0.30/0.34 | 0.22/0.25 | 0.36 | 0.30 |
σ500 °C (mS·cm−1) | 100/113 | 71/102 | 69/101 | 17 | 192 |
σ400 °C (mS·cm−1) | 6.3 × 10−2/8.1 × 10−2 | 1.6 × 10−2/3 × 10−2 | 38/47 | 5 | 89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taillades, G.; Hachemi, I.; Pers, P.; Dailly, J.; Marrony, M. Synthesis and Characterizations of Barium Zirconate–Alkali Carbonate Composite Electrolytes for Intermediate Temperature Fuel Cells. J. Compos. Sci. 2021, 5, 183. https://doi.org/10.3390/jcs5070183
Taillades G, Hachemi I, Pers P, Dailly J, Marrony M. Synthesis and Characterizations of Barium Zirconate–Alkali Carbonate Composite Electrolytes for Intermediate Temperature Fuel Cells. Journal of Composites Science. 2021; 5(7):183. https://doi.org/10.3390/jcs5070183
Chicago/Turabian StyleTaillades, Gilles, Ismahan Hachemi, Paul Pers, Julian Dailly, and Mathieu Marrony. 2021. "Synthesis and Characterizations of Barium Zirconate–Alkali Carbonate Composite Electrolytes for Intermediate Temperature Fuel Cells" Journal of Composites Science 5, no. 7: 183. https://doi.org/10.3390/jcs5070183
APA StyleTaillades, G., Hachemi, I., Pers, P., Dailly, J., & Marrony, M. (2021). Synthesis and Characterizations of Barium Zirconate–Alkali Carbonate Composite Electrolytes for Intermediate Temperature Fuel Cells. Journal of Composites Science, 5(7), 183. https://doi.org/10.3390/jcs5070183