Use of Zr–Ti Alloy Melt Infiltration for Fabricating Carbon-Fiber-Reinforced Ultrahigh-Temperature Ceramic Matrix Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Zr–Ti Alloys for MI
2.2. Measurement of Wetting Angle between Graphite and Zr–Ti Alloy
2.3. Infiltration of Zr–Ti Alloys into Porous Media
2.4. Microstructural Characterization
3. Results and Discussion
3.1. Wetting between Graphite and Zr–Ti Alloys
3.2. Infiltration of Zr–Ti Alloys into Model Preform
3.3. Microstructures of Model Materials
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fahrenholtz, W.G.; Hilmas, G.E.; Talmy, I.G.; Zaykoski, J.A. Refractory diborides of zirconium and hafnium. J. Am. Ceram. Soc. 2007, 90, 1347–1364. [Google Scholar] [CrossRef]
- Guo, S.-Q. Densification of ZrB₂–based composites and their mechanical and physical properties: A review. J. Eur. Ceram. Soc. 2009, 29, 995–1011. [Google Scholar] [CrossRef]
- Inoue, R.; Arai, Y.; Kubota, Y.; Kogo, Y.; Goto, K. Oxidation of ZrB₂ and its composites: A review. J. Mater. Sci. 2018, 1–22. [Google Scholar] [CrossRef]
- Fahrenholtz, W.G. Thermodynamic analysis of ZrB₂–SiC oxidation: Formation of a SiC-depleted region. J. Am. Ceram. Soc. 2007, 90, 143–148. [Google Scholar] [CrossRef]
- Silvestroni, L.; Meriggi, G.; Sciti, D. Oxidation behavior of ZrB2 composites doped with various transition metal silicides. Corros. Sci. 2014, 83, 281–291. [Google Scholar] [CrossRef]
- Lavrenko, V.A.; Panasyuk, A.D.; Protsenko, T.G.; Dyatel, V.P.; Lugovskaya, E.S.; Egorova, E.I. High-temperature reactions of materials of the ZrB2–ZrSi2 system with oxygen. Sov. Powder Metall. Met. Ceram. 1982, 21, 471–473. [Google Scholar] [CrossRef]
- Sciti, D.; Brach, M.; Bellosi, A. Oxidation behavior of a pressureless sintered ZrB₂–MoSi₂ ceramic composite. J. Mater. Res. 2005, 20, 922–930. [Google Scholar] [CrossRef]
- Glass, D.E. Ceramic matrix composite (CMC) thermal protection systems (TPS) and hot structures for hypersonic vehicles. In Proceedings of the 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Dayton, OH, USA, 28 April–1 May 2008; pp. 1–36. [Google Scholar]
- Budiansky, B.; Hutchinson, J.W.; Evans, A.G. Matrix fracture in fiber-reinforced ceramics. J. Mech. Phys. Solids 1986, 34, 167–189. [Google Scholar] [CrossRef]
- Evans, A.G.; Zok, F.W. The physics and mechanics of fibre-reinforced brittle matrix composites. J. Mater. Sci. 1994, 29, 3857–3896. [Google Scholar] [CrossRef]
- Arai, Y.; Inoue, R.; Goto, K.; Kogo, Y. Carbon fiber reinforced ultra-high temperature ceramic matrix composites: A review. Ceram. Int. 2019, 45, 14481–14489. [Google Scholar] [CrossRef]
- Vinci, A.; Zoli, L.; Sciti, D.; Melandri, C.; Guicciardi, S. Understanding the mechanical properties of novel UHTCMCs through random forest and regression tree analysis. J. Mater. Des. 2018, 145, 97–107. [Google Scholar] [CrossRef]
- Sciti, D.; Silvestroni, L. Processing, sintering and oxidation behavior of SiC fibers reinforced ZrB2 composites. J. Eur. Ceram. Soc. 2012, 32, 1933–1940. [Google Scholar] [CrossRef]
- Naslain, R. Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: An overview. Compos. Sci. Technol. 2004, 64, 155–170. [Google Scholar] [CrossRef]
- Zhang, Y.; Zuo, T.T.; Tang, Z.; Gao, M.C.; Dahmen, K.A.; Liaw, P.K.; Lu, Z.P. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 2014, 61, 1–93. [Google Scholar] [CrossRef]
- Naslain, R. Materials design and processing of high temperature ceramic matrix composites: State of the art and future trends. Adv. Compos. Mater. 1999, 8, 3–16. [Google Scholar] [CrossRef]
- Delhaes, P. Chemical vapor deposition and infiltration processes of carbon materials. Carbon N. Y. 2002, 40, 641–657. [Google Scholar] [CrossRef]
- Aoki, T.; Ogasawara, T.; Okubo, Y.; Yoshida, K.; Yano, T. Fabrication and properties of Si–Hf alloy melt-infiltrated Tyranno ZMI fiber/SiC–based matrix composites. Compos. Part A 2014, 66, 155–162. [Google Scholar] [CrossRef]
- Aoki, T.; Ogasawara, T. Tyranno ZMI fiber/TiSi₂–Si matrix composites for high-temperature structural applications. Compos. Part A 2015, 76, 102–109. [Google Scholar] [CrossRef]
- Wang, S.; Zhu, Y.; Chen, H.; Li, W.; Chen, Z. Effect of Cu on the ablation properties of Cf/ZrC composites fabricated by infiltrating Cf/C preforms with Zr-Cu alloys. Ceram. Int. 2015, 41, 5976–5983. [Google Scholar] [CrossRef]
- Pi, H.; Fan, S.; Wang, Y. C/SiC–ZrB2–ZrC composites fabricated by reactive melt infiltration with ZrSi2 alloy. Ceram. Int. 2012, 38, 6541–6548. [Google Scholar] [CrossRef]
- Inoue, R.; Kakisawa, H.; Kagawa, Y. Fracture criterion of short carbon fiber-dispersed SiC matrix composite under mixed mode loading condition. In Proceedings of the 10th Pacific Rim Conference on Ceramic and Glass Technology, San Diego, CA, USA, 2–7 June 2013; p. 53. [Google Scholar]
- Inoue, R.; Yang, J.M.; Kakisawa, H.; Kagawa, Y. Mixed-mode fracture criterion of short carbon fiber-dispersed SiC matrix composite. J. Ceram. Sci. Technol. 2017, 8, 223–232. [Google Scholar] [CrossRef]
- Inoue, R.; Yang, J.M.; Kakisawa, H.; Kagawa, Y. Mode I fracture toughness of short carbon fiber-dispersed SiC matrix composite fabricated by melt infiltration process. Ceram. Int. 2013, 39, 8341–8346. [Google Scholar] [CrossRef] [Green Version]
- Inoue, R.; Arai, Y.; Kubota, Y.; Goto, K.; Kogo, Y. Oxidation behavior of carbon fiber-dispersed ZrB₂–SiC–ZrC triple phase matrix composites in an oxyhydrogen torch environment. Ceram. Int. 2018, 44, 8387–8396. [Google Scholar] [CrossRef]
- Inoue, R.; Arai, Y.; Kubota, Y. Oxidation behaviors of ZrB₂–SiC binary composites above 2000 °C. Ceram. Int. 2017, 43, 8081–8088. [Google Scholar] [CrossRef]
- Inoue, R.; Arai, Y.; Kubota, Y.; Kogo, Y.; Goto, K. Initial oxidation behaviors of ZrB₂–SiC–ZrC ternary composites above 2000 °C. J. Alloys Compd. 2018, 731, 310–317. [Google Scholar] [CrossRef]
- Kubota, Y.; Tanaka, H.; Arai, Y.; Inoue, R.; Kogo, Y.; Goto, K. Oxidation behavior of ZrB2–SiC–ZrC at 1700 °C. J. Eur. Ceram. Soc. 2017, 37, 1187–1194. [Google Scholar] [CrossRef]
- Arai, Y.; Inoue, R.; Tanaka, H.; Kogo, Y.; Goto, K. In-situ observation of oxidation behavior in ZrB₂–SiC–ZrC ternary composites up to 1500 °C using high-temperature observation system. J. Ceram. Soc. Jpn. 2016, 124, 890–897. [Google Scholar] [CrossRef] [Green Version]
- Zou, L.; Wali, N.; Yang, J.-M.; Bansal, N.P. Microstructural development of a Cf/ZrC composite manufactured by reactive melt infiltration. J. Eur. Ceram. Soc. 2010, 30, 1527–1535. [Google Scholar] [CrossRef]
- Murray, J.L. The Ti-Zr (Titanium-Zirconium) system. Bull. Alloy Phase Diagr. 1981, 2, 197–201. [Google Scholar] [CrossRef]
- Arai, Y.; Daigo, Y.; Esuke, K.; Ryo, I.; Yasuo, K. Relationship between the microstructures and Young’s modulus of three-dimensional networked porous carbon material. J. Mater. Sci. 2021, 56, 10338–10352. [Google Scholar] [CrossRef]
- Inoue, R.; Li, G.; Kojo, E.; Nakajima, M.; Kubota, Y.; Kogo, Y. Experimental investigation and analysis of mechanical properties of three-dimensionally networked porous carbon material. In Proceedings of the 12th Pacific Rim Conference on Ceramic and Glass Technology: Ceramic Transactions, Waikoloa, HI, USA, 21–26 May 2018; pp. 77–84. [Google Scholar]
- Einset, E.O. Capillary infiltration rates into porous media with applications to silcomp processing. J. Am. Ceram. Soc. 1996, 79, 333–338. [Google Scholar] [CrossRef]
- Dubrovinskaia, N.A.; Dubrovinsky, L.S.; Saxena, S.K.; Ahuja, R.; Johansson, B. High-pressure study of titanium carbide. J. Alloys Compd. 1999, 289, 24–27. [Google Scholar] [CrossRef]
- Rahimzadeh, E.; Joshi, N.R.; Singh, S. Thermal expansion of ZrC from 120 to 300 K by an X-ray powder method. J. Am. Ceram. Soc. 1984, 67, C-139–C-140. [Google Scholar] [CrossRef]
- Ivashchenko, V.I.; Turchi, P.E.A.; Shevchenko, V.I. First-principles study of elastic and stability properties of ZrC–ZrN and ZrC-TiC alloys. J. Phys. Condens. Matter 2009, 21. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Katsui, H.; Goto, T. Phase decomposition of TiC–ZrC solid solution prepared by spark plasma sintering. Ceram. Int. 2015, 41, 14258–14262. [Google Scholar] [CrossRef]
- Chase, M.W., Jr. NIST-JANAF Thermochemical Tables, 4th ed.; American Institute of Physics: Woodbury, NY, USA, 1998. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arai, Y.; Marumo, T.; Inoue, R. Use of Zr–Ti Alloy Melt Infiltration for Fabricating Carbon-Fiber-Reinforced Ultrahigh-Temperature Ceramic Matrix Composites. J. Compos. Sci. 2021, 5, 186. https://doi.org/10.3390/jcs5070186
Arai Y, Marumo T, Inoue R. Use of Zr–Ti Alloy Melt Infiltration for Fabricating Carbon-Fiber-Reinforced Ultrahigh-Temperature Ceramic Matrix Composites. Journal of Composites Science. 2021; 5(7):186. https://doi.org/10.3390/jcs5070186
Chicago/Turabian StyleArai, Yutaro, Tomoki Marumo, and Ryo Inoue. 2021. "Use of Zr–Ti Alloy Melt Infiltration for Fabricating Carbon-Fiber-Reinforced Ultrahigh-Temperature Ceramic Matrix Composites" Journal of Composites Science 5, no. 7: 186. https://doi.org/10.3390/jcs5070186
APA StyleArai, Y., Marumo, T., & Inoue, R. (2021). Use of Zr–Ti Alloy Melt Infiltration for Fabricating Carbon-Fiber-Reinforced Ultrahigh-Temperature Ceramic Matrix Composites. Journal of Composites Science, 5(7), 186. https://doi.org/10.3390/jcs5070186