Stress-Function Variational Method for Accurate Free-Edge Interfacial Stress Analysis of Adhesively Bonded Single-Lap Joints and Single-Sided Joints
Abstract
:1. Introduction
2. Problem Formulation and Solutions
2.1. Static Equilibrium Equations of General ABJs
2.2. Stress Resultants of an Adhesively Bonded Single-Lap Joint (ABSLJ) Subjected to a Shear Force
2.3. Planar Stresses in the Adherends and Adhesive Layer of an ABSLJ
2.4. Governing Equations of the Interfacial Stress Functions and Their Solution of an ABSLJ
2.5. Model Validation and Numerical Examples of Interfacial Normal and Shear Stresses of an ABSLJ
2.5.1. Model Validation by Finite Element Method (FEM)
2.5.2. Scaling Analysis of Interfacial Shear and Normal Stresses of ABSLJs Due to Mechanical Loads
2.6. Interfacial Shear and Normal Stress Analysis of an Adhesively Single-Sided Joint (ASSJ) Subjected to Uniaxial Tension
2.6.1. Stress Resultants in the Upper and Lower Adherends and Adhesive Layer of the ASSJ
2.6.2. Planar Stress Components in the Adherends and Adhesive Layer of the ASSJ
2.6.3. Model Validation and Numerical Examples of Interfacial Shear and Normal Stresses of an ASSJ Subjected to Uniaxial Tension
Model Validation by Finite Element Method (FEM)
Scaling Analysis of Thermomechanical Interfacial Shear and Normal Stresses in an ASSJ Subjected to Uniform Temperature Change
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
i (i = 0,1,2) | index corresponds to physical or geometrical quantities of the adhesive (i = 0), upper adherend (i = 1), or lower adherend layer (i = 2). |
A, B, C, D | coefficient matrices of the set of governing ODEs of interfacial stress functions |
b | width of an adhesively bonded joint (ABJ) |
ck, dk (k = 1,2,…,8) | coefficients of the stress functions to satisfy the traction boundary conditions |
{D}4×1 | ={D1, D2, D3, D4}T, dimensionless mechanical/thermomechanical load vector |
Ei | Young’s modulus |
e20 | = E2/E0 |
e21 | = E2/E1 |
Fi | integration of the dimensionless interfacial shear-stress function, i.e., |
fi (i = 1,2) | interfacial shear-stress function |
Gi | double integration of the dimensionless interfacial normal-stress function, i.e., |
gi (i = 1,2) | interfacial normal (peeling) stress function |
hi | layer thickness |
h02 | = h0/h2 |
h12 | = h1/h2 |
L | length of an ABJ |
m0 | bending moment per unit width acting on the left end of an ABJ |
Mi | bending moment |
Qi | shear force |
Si | axial force |
t0 | density of applied shear traction |
U | strain energy of an ABJ |
x | horizontal coordinate |
yi | lateral coordinate |
αi | coefficient of thermal expansion |
ΔT | uniform temperature change from reference temperature |
δ | variational operator |
planar normal strains | |
λ, λk (k = 1,2, …,8) | generalized eigenvalue and the k-th eigenvalue |
generalized eigenvector corresponding to λ and the k-th eigenvector corresponding to λk | |
ψ | homogeneous solution to the set of governing ODEs of the interfacial stress functions |
{Φ}4×1 | dimensionless interfacial stress function vector, i.e., |
planar normal stresses | |
planar shear stresses | |
νi | Poisson’s ratio |
Appendix A
- % Interfacial shear & normal stresses at upper/lower surfaces of the adhesive layer based on stress-function variational method
- clear all
- close all
- shear_01 = zeros(4,201); % Upper shear stress at varying thickness ratio H02
- shear_02 = zeros(4,201); % Lower shear stress at varying thickness ratio H02
- normal_01 = zeros(4,201); % Upper normal stress at varying thickness ratio H02
- normal_02 = zeros(4,201); % Lower normal stress at varying thickness ratio H02
- Sxy_01 = zeros(5,201); % Upper shear stress at varying thickness ratio H02 for plotting
- Sxy_02 = zeros(5,201); % Lower shear stress at varying thickness ratio H02 for plotting
- Syy_01 = zeros(5,201); % Upper normal stress at varying thickness ratio H02 for plotting
- Syy_02 = zeros(5,201); % Lower normal stress at varying thickness ratio H02 for plotting
- H02 = [0.1,0.25,0.5,1.0]; % Four sampling adhesive-layer thickness ratio--> H02 = h0/h2
- h12 = 1.0; % h12--> Ratio of h1/h2: Thickness ratio of upper to lower adherend
- e21 = 1/3; % e21--> Ratio of E2/E1: Modulus ratio of upper adherend to lower adherend
- e20 = 5; % e20--> Ratio of E2/E0: Modulus ratio of lower adherend to adhesive layer
- mu1 = 0.293; % mu1--> Poisson’s ratio for upper layer 1 --> Steel (upper)
- mu2 = 0.345; % mu2--> Poisson’s ratio for lower layer 2 --> Aluminum (lower)
- mu0 = 0.4; % mu0--> Poisson’s ration for adhesive layer 0 --> Adhesive
- Lh2 = 8; % Lh2--> Ratio of L/h2: Binding length to lower adherend thickness
- dT = 0; % Temperature change: Celsius
- arf1 = 10.0E−6; % Coefficient of thermal expansion of cover material--Steel (upper)
- arf2 = 23.9E−6; % Coefficient of thermal expansion of substrate material--Aluminum (lower)
- arf0 = 73.8E−6; % Coefficient of thermal expansion of adhesive layer--Epoxy
- E2 = 70*1000; % Young’s modulus of Aluminum: MPa
- t0 = 1.0; % Shear force density or reference stress: assumed to be 1 MPa
- for jj = 1:1:4 % Iteration for 4 different sampling ratios: h0/h2
- h02 = H02(jj); % h02--> Ratio of h0/h2: Thickness ratio of adhesive layer to lower adherend
- % Coefficient A, B, C matrices of the governing ODEs of the system
- A11 = 1/105*(h02^3*e20 + h12^3*e21);
- A12 = 11/210*(h02^2*e20-h12^2*e21);
- A13 = −1/140*h02^3*e20;
- A14 = 13/420*h02^2*e20;
- A22 = 13/35*(h02*e20 + h12*e21);
- A23 = −13/420*h02^2*e20;
- A24 = 9/70*h02*e20;
- A33 = 1/105*(1 + h02^3*e20);
- A34 = 11/210*(1-h02^2*e20);
- A44 = 13/35*(1 + h02*e20);
- B11 = −4/15*(h02*e20 + h12*e21);
- B12 = 1/5*(-e20 + e21) + mu0*e20-mu1*e21;
- B13 = 1/15*h02*e20;
- B14 = 1/5*e20;
- B22 = −12/5*(1/h02*e20 + 1/h12*e21);
- B23 = −1/5*e20;
- B24 = 12/5/h02*e20;
- B33 = −4/15*(1 + h02*e20);
- B34 = −1/5*(1-e20)-mu0*e20 + mu2;
- B44 = −12/5*(1 + 1/h02*e20);
- C11 = 4*(1/h02*e20 + 1/h12*e21);
- C12 = 6*(1/h02^2*e20−1/h12^2*e21);
- C13 = 2/h02*e20;
- C14 = −6/h02^2*e20;
- C22 = 12*(1/h02^3*e20 + 1/h12^3*e21);
- C23 = 6/h02^2*e20;
- C24 = −12/h02^3*e20;
- C33 = 4*(1 + 1/h02*e20);
- C34 = 6*(1−1/h02^2*e20);
- C44 = 12*(1 + 1/h02^3*e20);
- D10 = −6*Lh2/h12^2*e21 + 0.5*dT*(-arf0 + arf1)*E2/t0; % D1 at x = 0
- D11 = 0.5*dT*(-arf0 + arf1)*E2/t0; % D1 at x = L
- D20 = 12*Lh2/h12^2*e21; % D2 at x = 0
- D21 = 0; % D2 at x = L
- D3 = 0.5*dT*(-arf2 + arf0)*E2/t0;
- D4 = 0;
- dD1 = 6/h12^2*e21; % Derivative of D1
- dD2 = −12/h12^2*e21; % Derivative of D2
- dD3 = 0;
- dD4 = 0;
- A = [A11, A12, A13, A14; A12, A22, A23, A24; A13, A23, A33, A34; A14, A24, A34, A44];
- B = [B11, B12, B13, B14; B12, B22, B23, B24; B13, B23, B33, B34; B14, B24, B34, B44];
- C = [C11, C12, C13, C14; C12, C22, C23, C24; C13, C23, C33, C34; C14, C24, C34, C44];
- DD0 = [D10, D20, D3, D4]’; % Vector column D at x = 0
- DD1 = [D11, D21, D3, D4]’; % Vector column D at x = 1
- dD = [dD1,dD2,dD3,dD4]’; % Derivative of column D
- phi0 = -inv(C)*DD0; % Particular solution at x = 0
- phi1 = -inv(C)*DD1; % Particular solution at x = 1
- dphi0 = -inv(C)*dD; % Derivative of particular solution
- % Formulation of generalized eigenvalue problem
- % [AA]{psi} = lamda^(−2)*[BB]{psi} with the rank 8
- AA = [eye(4), zeros(4); zeros(4), A];
- BB = [zeros(4), -eye(4); C, B];
- % Solution of [AA]{psi} = -lamda^(−2)*[BB]{psi}
- [u,d] = eig(AA,-BB); % Column vectors of u are eigenvectors of (AA,-BB)
- psi0 = [u(1,:);u(2,:);u(3,:);u(4,:)]; % Generally, complex numbers
- lamda = 1./(sqrt(diag(d)))’; % Extract the lamda to form a complex row vector
- % Coefficient matrix of a set of linear algebraic equations to satisfy the traction boundary conditions
- row1 = [psi0(1,:), psi0(1,:)]; % First element of each eigenvector 1 X 8
- row2 = [exp(lamda*Lh2).*psi0(1,:), exp(-lamda*Lh2).*psi0(1,:)];
- row3 = [lamda.*psi0(1,:), -lamda.*psi0(1,:)];
- row4 = [(lamda.*exp(lamda*Lh2)).*psi0(1,:), -(lamda.*exp(-lamda*Lh2)).*psi0(1,:)];
- row5 = [psi0(2,:), psi0(2,:)]; % Second element of each eigenvector 1 X 8
- row6 = [exp(lamda*Lh2).*psi0(2,:), exp(-lamda*Lh2).*psi0(2,:)];
- row7 = [lamda.*psi0(2,:), -lamda.*psi0(2,:)];
- row8 = [(lamda.*exp(lamda*Lh2)).*psi0(2,:), -(lamda.*exp(-lamda*Lh2)).*psi0(2,:)];
- row9 = [psi0(3,:), psi0(3,:)]; % Third element of each eigenvector 1 X 8
- row10 = [exp(lamda*Lh2).*psi0(3,:), exp(-lamda*Lh2).*psi0(3,:)];
- row11 = [lamda.*psi0(3,:), -lamda.*psi0(3,:)];
- row12 = [(lamda.*exp(lamda*Lh2)).*psi0(3,:), -(lamda.*exp(-lamda*Lh2)).*psi0(3,:)];
- row13 = [psi0(4,:), psi0(4,:)]; % Forth element of each eigenvector 1 X 8
- row14 = [exp(lamda*Lh2).*psi0(4,:), exp(-lamda*Lh2).*psi0(4,:)];
- row15 = [lamda.*psi0(4,:), -lamda.*psi0(4,:)];
- row16 = [(lamda.*exp(lamda*Lh2)).*psi0(4,:), -(lamda.*exp(-lamda*Lh2)).*psi0(4,:)];
- KK = [row1; row2; row3; row4; row5; row6; row7; row8; … % Coefficient matrix
- row9; row10; row11; row12; row13; row14; row15; row16];
- bb = [-phi0(1), -phi1(1), -dphi0(1), -dphi0(1), -phi0(2), -phi1(2), -dphi0(2), 1-dphi0(2), … % Left column vector
- -phi0(3), -phi1(3), -dphi0(3), -dphi0(3), -phi0(4), -phi1(4), -dphi0(4), 1-dphi0(4)]’;
- disp(‘Condition number for matrix inverse--inv(KK)’)
- cond(KK)
- % Coefficients c(1:8) & d(1:8) by solving a system of simultaneous linear alegbraic equationa
- cof = inv(KK)*bb
- % Normalized interfacial shear and normal stresses
- for kk = 1:1:201 % Sampling stresses at 201 locations along the binding line
- kj = (kk−1)/200;
- shear_01(jj,kk) =real((cof(1:8))’*(lamda.*exp(lamda*Lh2*kj).*psi0(1,:))’-(cof(9:16))’*(lamda.*
- exp(-lamda*Lh2*kj).*psi0(1,:))’) + dphi0(1);
- normal_01(jj,kk) = real((cof(1:8))’*(lamda.*lamda.*exp(lamda*Lh2*kj).*psi0(2,:))’ + (cof(9:16))’*(lamda.*lamda.*
- exp(-lamda*Lh2*kj).*psi0(2,:))’);
- shear_02(jj,kk) =real((cof(1:8))’*(lamda.*exp(lamda*Lh2*kj).*psi0(3,:))’-(cof(9:16))’*(lamda.*
- exp(-lamda*Lh2*kj).*psi0(3,:))’) + dphi0(3);
- normal_02(jj,kk) = real((cof(1:8))’*(lamda.*lamda.*exp(lamda*Lh2*kj).*psi0(4,:))’ + (cof(9:16))’*(lamda.*lamda.*
- exp(-lamda*Lh2*kj).*psi0(4,:))’);
- end
- end
- kk = 1:1:201;
- xx(kk) = (kk−1)/200*Lh2;
- zero00(kk) = 0; % Zero stress for easy visualization
- Sxy_01 = [shear_01(1,kk); shear_01(2,kk); shear_01(3,kk); shear_01(4,kk); zero00(kk)];
- % Upper interfacial shear stress
- Syy_01 = [normal_01(1,kk); normal_01(2,kk); normal_01(3,kk); normal_01(4,kk); zero00(kk)];
- % Upper interfacial normal stress
- Sxy_02 = [shear_02(1,kk); shear_02(2,kk); shear_02(3,kk); shear_02(4,kk); zero00(kk)];
- % Lower interfacial shear stress
- Syy_02 = [normal_02(1,kk); normal_02(2,kk); normal_02(3,kk); normal_02(4,kk); zero00(kk)];
- % Lower interfacial normal stress
- figure (1)
- plot(xx(kk),Sxy_01, xx(kk), zero00(kk)); axis([−0.1, 8, −1, 8]);
- xlabel(‘x/h2′),ylabel(‘Normalized shear stress-- f/t0′); title(‘Predicted upper interfacial shear stresses--f/t0′);
- figure (2)
- plot(xx(kk),Sxy_02, xx(kk), zero00(kk)); axis([−0.1, 8, −1,7]);
- xlabel(‘x/h2′),ylabel(‘Normalized shear Stress-- f/p0′); title(‘Predicted lower interfacial shear stresses--t/t0′);
- figure (3)
- plot(xx(kk),Syy_01, xx(kk), zero00(kk)); axis([−0.1, 8, −40, 5]);
- xlabel(‘x/h2′),ylabel(‘Normalized normal stress-- g/p0′); title(‘Predicted upper interfacial normal stresses--g/t0′);
- figure (4)
- plot(xx(kk),Syy_02, xx(kk), zero00(kk)); axis([−0.1, 8, −15, 20]);
- xlabel(‘x/h2′),ylabel(‘Normalized normal stress-- g/t0′); title(‘Predicted lower interfacial normal stresses--g/t0′);
References
- Tomblin, J.; Davies, C. Bonded structures industry survey. In Proceedings of the 2004 FAA Bonded Structures Workshop, Seattle, WA, USA, 16–18 June 2004. [Google Scholar]
- Wu, X.F.; Zhao, Y. Stress-function variational method for interfacial stress analysis of adhesively bonded joints. Int. J. Solids Struct. 2013, 50, 4305–4319. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.F.; Chowdhury, U. Computational analysis of the mechanical strength and debonding process of adhesively bonded joints. Int. J. Solid Mater. 2019, 1, 171–225. [Google Scholar]
- Davis, M.; Bond, D. Principles and practices of adhesive bonded structural joints and repairs. Int. J. Adhes. Adhes. 1999, 19, 91–105. [Google Scholar] [CrossRef]
- Higgins, A. Adhesive bonding of aircraft structures. Int. J. Adhes. Adhes. 2000, 20, 367–376. [Google Scholar] [CrossRef]
- Park, S.Y.; Choi, W.J.; Choi, H.S.; Kwon, H.; Kim, S.H. Recent trends in surface treatment technologies for airframe adhesive bonding processing: A review (1995–2008). J. Adhesion 2010, 86, 192–221. [Google Scholar] [CrossRef]
- Rose, J.L.; Rajana, K.M.; Hansch, M.K.T. Ultrasonic guided waves for NDE of adhesively bonded structures. J. Adhesion 1995, 50, 71–82. [Google Scholar] [CrossRef]
- Racker, B. Bonding Processes in Airbus in: 2004 FAA Workshop on Adhesive Bonding, Sussex, UK. Available online: http//:www.niar.wichita.edu (accessed on 5 January 2021).
- Hart-Smith, L.J. Adhesively Bonded Joints in Aircraft Structures; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Chen, W.T.; Nelson, C.W. Thermal stress in bonded joints. IBM J. Res. Develop. 1979, 23, 179–188. [Google Scholar] [CrossRef]
- Suhir, E. Thermally induced interfacial stresses in elongated bimaterial plates. Appl. Mech. Rev. Trans. ASME 1989, 42, S253–S262. [Google Scholar] [CrossRef]
- Eischen, J.W.; Chung, C.; Kim, J.H. Realistic modeling of edge effect stresses in bimetallic elements. J. Elec. Packag. Trans. ASME 1990, 112, 16–23. [Google Scholar] [CrossRef]
- Tsai, M.Y.; Hsu, C.H.; Han, C.N. A note on Suhir’s solution of thermal stresses for a die-substrate assembly. J. Electron. Packag. Trans. ASME 2004, 126, 115–119. [Google Scholar] [CrossRef]
- Ru, C.Q. Interfacial thermal stresses in bimaterial elastic beams: Modified beam models revisited. J. Electron. Packag. Trans. ASME 2002, 124, 141–146. [Google Scholar] [CrossRef]
- Suo, Z. Reliability of interconnect structures. In Interfacial and Nanoscale Failure; Gerberich, W., Yang, W., Eds.; Elsevier: Amsterdam, The Netherlands, 2003; pp. 265–324. [Google Scholar]
- Suo, Z.G. Mechanics of stretchable electronics and soft machines. MRS Bull. 2012, 37, 218–225. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.Y.; Lu, N.S.; Oh, K.H.; Suo, Z.; Vlassak, J.J. Islands stretch test for measuring the interfacial fracture energy between a hard film and a soft substrate. J. Appl. Phys. 2013, 113, 223702. [Google Scholar] [CrossRef] [Green Version]
- Lu, N.S.; Yoon, J.; Suo, Z.G. Delamination of stiff islands patterned on stretchable substrates. Int. J. Mater. Res. 2007, 98, 717–722. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Lee, I.; Kim, T.S.; Rolston, N.; Watson, B.L.; Dauskardt, R.H. Understanding mechanical behavior and reliability of organic electronic materials. MRS Bull. 2017, 42, 115–123. [Google Scholar] [CrossRef] [Green Version]
- Timoshenko, S. Analysis of bi-metal thermostats. J. Opt. Soc. Amer. 1915, 11, 233–255. [Google Scholar] [CrossRef]
- Volkersen, O. Die Nietkraftverleitung in zugbeanspruchten Nietverbindungen mit konstanten Laschenquerschnitten. Luftfahrtforschung 1938, 15, 41–47. [Google Scholar]
- Goland, M.; Reissner, E. The stresses in cemented joints. J. Appl. Mech. Trans. ASME 1944, 11, 17–24. [Google Scholar] [CrossRef]
- Wu, X.F.; Jenson, R.A. Stress-function variational method for stress analysis of bonded joints under mechanical and thermal loads. Int. J. Eng. Sci. 2011, 49, 279–294. [Google Scholar] [CrossRef]
- Wu, X.F.; Jenson, R.A. Semi-analytic stress-function variational approach for the interfacial stresses in bonded joints. J. Eng. Mech. 2014, 04014089, 1–11. [Google Scholar]
- Wu, X.F.; Jenson, R.A.; Zhao, Y. Stress-function variational approach to the interfacial stresses and progressive cracking in surface coatings. Mech. Mater. 2014, 69, 195–203. [Google Scholar] [CrossRef]
- Wu, X.F.; Jenson, R.A. Interfacial stresses of bonded single-lap joints under mechanical and thermomechanical loads. Int. J. Solid Mater. 2019, 1, 79–115. [Google Scholar]
- Erdogan, F.; Ratwani, M. Stress distribution in bonded joints. J. Compos. Mater. 1971, 5, 378–393. [Google Scholar] [CrossRef]
- Delale, F.; Erdogan, F.; Aydinoglu, M.N. Stress in adhesively bonded joints: A closed-form solution. J. Compos. Mater. 1981, 15, 249–271. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y. Stress-function Variational Method for Stress Analysis of Adhesively Bonded Joints. Master’s Thesis, North Dakota State University, Fargo, ND, USA, 2015. [Google Scholar]
- Chen, D.; Cheng, S. An analysis of adhesive-bonded single-lap joints. J. Appl. Mech. Trans. ASME 1983, 50, 109–115. [Google Scholar] [CrossRef]
- Her, S.C. Stress analysis of adhesively-bonded lap joints. Compos. Struct. 1999, 47, 673–678. [Google Scholar] [CrossRef]
- Lee, J.; Kim, H. Stress analysis of generally asymmetric single lap adhesively bonded joints. J. Adhes. 2005, 81, 443–472. [Google Scholar] [CrossRef]
- Radice, J.J.; Vinson, J.R. On the analysis of adhesively bonded structures: A high order semi-elastic adhesive layer model. Compos. Sci. Tech. 2008, 68, 376–386. [Google Scholar] [CrossRef]
- Tsai, M.Y.; Morton, J. An investigation into the stresses in double-lap adhesive joints with laminated composite adherends. Int. J. Solids Struct. 2010, 35, 1163–1185. [Google Scholar] [CrossRef]
- Zhao, B.; Lu, Z.H.; Lu, Y.N. Closed-form solutions for elastic stress-strain analysis in unbalanced adhesive single-lap joints considering adherend deformations and bond thickness. Int. J. Adhes. Adhes. 2011, 31, 434–445. [Google Scholar] [CrossRef]
- Yousefsani, S.A.; Tahani, M. Accurate determination of stress distribution in adhesively bonded homogenous and heterogeneous double-lap joints. Eur. J. Mech. A 2013, A39, 197–208. [Google Scholar] [CrossRef]
- Yousefsani, S.A.; Tahani, M. Analytic solution for adhesively bonded composite single-lap joints under mechanical loadings using full layerwise theory. Int. J. Adhes. 2013, 43, 32–41. [Google Scholar] [CrossRef]
- Yousefsani, S.A.; Tahani, M. An analytical investigation on thermomechanical stress analysis of adhesively bonded joints undergoing heat conduct. Arch. Appl. Mech. 2014, 81, 67–79. [Google Scholar] [CrossRef]
- Kumer, S.; Scanlan, J.P. On asymmetric adhesive joints with graded interface stiffness. Int. J. Adhes. Adhes. 2013, 41, 57–72. [Google Scholar] [CrossRef]
- Wong, E.H. Interfacial stresses in sandwich structures subjected to temperature and mechanical loads. Compos. Struct. 2015, 134, 226–236. [Google Scholar] [CrossRef]
- Wong, E.H.; Liu, J. Design analysis of adhesively bonded structures. Polymer 2017, 9, 664. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.A.; Kumar, S.; Reddy, J.N. Material-tailored adhesively bonded multilayers: A theoretical analysis. Int. J. Mech. Sci. 2018, 148, 246–262. [Google Scholar] [CrossRef]
- Amidi, S.; Wang, J. An analytic model for interfacial stresses of double-lap bonded joints. J. Adhes. 2019, 95, 1031–1055. [Google Scholar] [CrossRef]
- Wu, X.F.; Chowdhury, U. Fracture toughness of adhesively bonded joints with large plastic deformations. Eng. Fract. Mech. 2018, 190, 16–30. [Google Scholar] [CrossRef]
- Stein, N.; Rosendahl, P.L.; Becker, W. Modeling load transfer and mixed mode fracture of ductile adhesive composite joints. Int. J. Adhes. Adhes. 2018, 82, 299–310. [Google Scholar] [CrossRef]
- Park, S.Y.; Choi, W.J. Investigation on the effectiveness of silane-based field level surface treatments of aluminum substrates for on-aircraft bonded repairs. Int. J. Adhes. 2019, 95, 102414. [Google Scholar] [CrossRef]
- Long, H.; Wei, Y.; Liang, L. A rigorous analytical solution of interfacial stresses and overall stiffness of beam structures bonded with partially covered plates. Int. J. Mech. Sci. 2020, 167, 105284. [Google Scholar] [CrossRef]
- Suo, Z.; Hutchinson, J.W. Interface crack between two elastic layers. Int. J. Fract. 1990, 43, 1–18. [Google Scholar] [CrossRef]
- Hutchinson, J.W.; Suo, Z. Mixed mode cracking in layered materials. Adv. Appl. Mech. 1992, 29, 63–191. [Google Scholar]
- Yu, H.H.; Hutchinson, J.W. Edge effects in thin film delamination. Acta Mater. 2001, 49, 93–107. [Google Scholar] [CrossRef]
- Yu, H.H.; Hutchinson, J.W. Delamination of thin film strips. Thin Solid Films 2003, 423, 54–63. [Google Scholar] [CrossRef]
- Wu, X.F.; Dzenis, Y.A. Closed-form solution for a mode-III interfacial edge crack between two bonded dissimilar elastic strips. Mech. Res. Commun. 2002, 29, 407–412. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.F.; Lilla, E.; Zou, W.S. A semi-infinite crack between two bonded dissimilar elastic strips. Arch. Appl. Mech. 2002, 72, 630–636. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.F.; Dzenis, Y.A. Closed-form solution for the size of plastic zone in an edge-cracked strip. Int. J. Eng. Sci. 2002, 40, 1751–1759. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.F.; Dzenis, Y.A.; Fan, T.Y. Two semi-infinite interfacial cracks between two bonded dissimilar elastic strips. Int. J. Eng. Sci. 2003, 41, 1699–1710. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.F.; Dzenis, Y.A.; Zou, W.S. Interfacial edge crack between two bonded dissimilar orthotropic strips under antiplane point loading. ZAMM J. Appl. Math. Mech. 2003, 83, 419–422. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.F.; Dzenis, Y.A. Experimental determination of probabilistic edge-delamination of a graphite-fiber/epoxy composite. Compos. Struct. 2005, 70, 100–108. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.F. Elasticity solutions to the stress intensity factors (SIFs) of orthotropic double cantilever beams (DCBs) under antiplane cracking. Int. J. Solid Mater. 2019, 1, 155–169. [Google Scholar]
- Zwiers, R.I.; Ting, T.C.T.; Spilker, R.L. On the logarithm singularity of free-edge stress in laminated composites under uniform extension. J. Appl. Mech. Trans. ASME 1982, 49, 561–569. [Google Scholar] [CrossRef]
- Ting, T.C.T.; Chou, S.C. Edge singularities in anisotropic composites. Int. J. Solids Struct. 1981, 17, 1057–1068. [Google Scholar] [CrossRef]
- Ting, T.C.T. Explicit solution and invariance of the singularities at an interface crack in anisotropic composites. Int. J. Solids Struct. 1986, 22, 965–983. [Google Scholar] [CrossRef]
- Dundurs, J. Elastic interaction of dislocations with inhomogeneities. In Mathematics Theory of Dislocations; American Society of Mechanical Engineering: New York, NY, USA, 1968; pp. 70–115. [Google Scholar]
- Cheng, J.Q.; Taheri, F. A novel smart adhesively bonded joint system. Smart Mater. Struct. 2005, 41, 9710981. [Google Scholar] [CrossRef]
- Cheng, J.Q.; Taheri, F.; Han, H.P. Strength improvement of a smart adhesive bonded joint system by partially integrated piezoelectric patches. J. Adhes. Sci. Tech. 2006, 20, 503–518. [Google Scholar] [CrossRef]
- Kwon, J.W.; Chin, W.S.; Lee, D.G. Piezoelectric monitoring of the reliability of adhesive joints. J. Adhes. Sci. Tech. 2003, 17, 777–796. [Google Scholar] [CrossRef]
- Cheng, J.Q.; Wu, X.X.; Li, G.Q.; Taheri, F.; Pang, S.S. Development of a smart composite pipe joint integrated with piezoelectric layers under tensile loading. Int. J. Solids Struct. 2006, 43, 5370–5385. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.F. Fracture of Advanced Polymer Composites with Nanofiber Reinforced Interfaces. Ph.D. Thesis, University of Nebraska, Lincoln, NE, USA, 2003. [Google Scholar]
- Wu, X.F. Fracture of Advanced Composites with Nanostructured Interfaces: Fabrication, Characterization and Modeling; VDM Verlag Publishing House Ltd.: Berlin, Germany, 2009. [Google Scholar]
- Sinha-Ray, S.; Pelot, D.D.; Zhou, Z.; Rahman, A.; Wu, X.F.; Yarin, A.L. Encapsulation of self-healing materials by coelectrospinning, emulsion electrospinning, solution blowing and intercalation. J. Mater. Chem. 2012, 22, 9138–9146. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, L.F.; Rahman, A.; Zhou, Z.; Wu, X.F.; Fong, H. Hybrid multi-scale epoxy composite made of conventional carbon fiber fabrics with interlaminar regions containing electrospun carbon nanofiber mats. Compos. A Appl. Sci. Manufact. 2011, 42, 2036–2042. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, L.; Yoon, M.K.; Wu, X.F.; Arefin, R.H.; Fong, H. Preparation and evaluation of nano-epoxy composite resins containing electrospun glass nanofibers. J. Appl. Polym. Sci. 2012, 124, 444–451. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, L.; Zhao, Y.; Wu, X.F.; Fong, H. Hybrid multi-scale composites developed from glass microfiber fabrics and nano-epoxy resins containing electrospun glass nanofibers. Compos. B Eng. 2012, 43, 309–316. [Google Scholar] [CrossRef]
- Chen, Q.; Zhao, Y.; Zhou, Z.; Rahman, A.; Wu, X.F.; Wu, W.; Xu, T.; Fong, H. Fabrication and mechanical properties of hybrid multi-scale epoxy composites reinforced with conventional carbon fiber fabrics surface-attached with electrospun carbon nanofiber mats. Compos. B Eng. 2013, 44, 1–7. [Google Scholar] [CrossRef]
- Wu, X.F.; Rahman, A.; Zhou, Z.; Pelot, D.D.; Singa-Ray, S.; Chen, B.; Payne, S.; Yarin, A.L. Electrospinning core-shell nanofibers for interfacial toughening and self-healing of carbon-fiber/epoxy composites. J. Appl. Polym. Sci. 2013, 129, 1383–1393. [Google Scholar] [CrossRef]
- Wu, X.F.; Yarin, Y.L. Recent progress in interfacial toughening and damage self-healing of polymer composites based on electrospun and solution-blown nanofibers: An overview. J. Appl. Polym. Sci. 2013, 130, 2225–2237. [Google Scholar] [CrossRef]
- Wu, X.F.; Zholobko, O.; Zhou, Z.; Rahman, A. Electrospun nanofibers for interfacial toughening and damage self-healing of polymer composites and surface coatings. In Electrospun Polymers and Composites: Ultrafine Materials, High Performance Fibers and Wearables; Woodhead Publishing Ltd.: Cambridge, UK, 2020; pp. 315–359. [Google Scholar]
- Wu, X.F.; Dzenis, Y.A. Antiplane surface acoustic waves propagating in elastic half-space coated with an anisotropic laminate. Compos. Sci. Technol. 2005, 65, 1761–1768. [Google Scholar] [CrossRef] [Green Version]
- Reneker, D.H.; Chun, I. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 1996, 77, 216–223. [Google Scholar] [CrossRef] [Green Version]
- Reneker, D.H.; Yarin, A.L.; Zussman, E.; Xu, H. Electrospinning of nanofibers from polymer solutions and melts. Adv. Appl. Mech. 2007, 41, 43–195. [Google Scholar]
- Reneker, D.H.; Yarin, A.L. Electrospinning jets and polymer nanofibers. Polymer 2008, 49, 2387–2425. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.M.; Zhang, Y.Z.; Kotaki, M.; Ramakrishna, S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Techol. 2003, 63, 2223–2253. [Google Scholar] [CrossRef]
- Dzenis, Y. Spinning continuous fibers for nanotechnology. Science 2004, 304, 1917–1919. [Google Scholar] [CrossRef]
- Li, D.; Xia, Y.N. Electrospinning of nanofibers: Reinventing the wheel? Adv. Mater. 2004, 16, 1151–1170. [Google Scholar] [CrossRef]
- Zhou, Z.; Wu, X.F.; Gao, X.; Jiang, L.; Zhao, Y.; Fong, H. Parameter dependence of conic angle of nanofibers during electrospinning. J. Phys. D Appl. Phys. 2011, 44, 435401. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Wu, X.F.; Ding, Y.; Zhao, Y.; Jiang, L.; Xuan, C.; Sun, C. Needless emulsion electrospinning for scalable fabrication of core-shell nanofibers. J. Appl. Polym. Sci. 2014, 131, 40896. [Google Scholar] [CrossRef]
- Wu, X.F.; Zhou, Z.; Zholobko, O.; Jenniges, J.J.; Baatz, B.; Ahmadi, M.; Chen, J. Critical condition of electrohydrodynamic jetting from a polymer-solution droplet on a conductive wire. J. Appl. Phys. 2020, 127, 054303. [Google Scholar] [CrossRef]
- Hadj-Ahmed, R.; Foret, G.; Ehrlacher, A. Stress analysis in adhesive joints with a multiparticle model of multilayered materials (M4). Int. J. Adhes. Adhes. 2001, 21, 297–307. [Google Scholar] [CrossRef]
- Diaz, A.D.; Hadj-Ahmed, R.; Foret, G.; Ehrlacher, A. Stress analysis in a classical double lap, adhesively bonded joint with a layerwise model. Int. J. Adhes. 2009, 29, 67–76. [Google Scholar] [CrossRef]
- Da Silva, L.F.M.; das Neves, P.J.C.; Adams, R.D.; Spelt, J.K. Analytic models of adhesively bonded joints-part I: Literature survey. Int. J. Adhes. Adhes. 2009, 29, 319–330. [Google Scholar] [CrossRef]
- Da Silva, L.F.M.; das Neves, P.J.C.; Adams, R.D.; Wang, A.; Spelt, J.K. Analytic models of adhesively bonded joints-part II: Comparative study. Int. J. Adhes. Adhes. 2009, 29, 331–341. [Google Scholar] [CrossRef]
- He, X. A review of finite element analysis of adhesively bonded joints. Int. J. Adhes. Adhes. 2011, 31, 248–264. [Google Scholar] [CrossRef]
- Chaves, F.J.P.; da Silva, L.F.M.; de Moura, M.F.S.F.; Dillard, D.A.; Esteves, V.H.C. Fracture mechanics tests of adhesively bonded joints: A literature review. J. Adhes. 2014, 90, 955–992. [Google Scholar] [CrossRef]
- Budhe, S.; Banea, M.D.; De Barros, S.; da Silva, L.F.M. An updated review of adhesively bonded joints in composite materials. Int. J. Adhes. Adhes. 2017, 72, 30–42. [Google Scholar] [CrossRef]
- Banea, M.D. Debonding on demand of adhesively bonded joints: A critical review. Rev. Adhes. Adhes. 2019, 7, 33–50. [Google Scholar] [CrossRef]
- Kanani, A.Y.; Green, S.; Hou, X.; Ye, J. Hybrid and adhesively bonded joints with dissimilar adherends: A critical review. J. Adhes. Adhes. Techol. 2020, 1, 1–39. [Google Scholar]
- Samadvand, H.; Dehestani, M. A stress-function variational approach toward CFRP-concrete interfacial stresses in bonded joints. Adv. Concr. Constr. 2020, 9, 43–54. [Google Scholar]
- Chang, F.V. Thermal contact stresses of bi-metal strip thermostat. Appl. Math. Mech. 1983, 4, 363–376. [Google Scholar]
- Chang, F.V. Analysis of adhesive lap joint. Appl. Math. Mech. 1986, 7, 937–945. [Google Scholar]
- Chang, F.V. Interlaminar stresses of laminated composite joints with double cover plates. Int. J. Solids Struct. 1990, 26, 165–174. [Google Scholar]
- Chang, F.V. Interlaminar Stresses of Composite Materials; High Education Press: Beijing, China, 1993. (In Chinese) [Google Scholar]
- Wang, X. Stress-function Variational Methods for Stress Analysis of Composite Laminates and Adhesively Bonded Composite Joints. Master’s Thesis, North Dakota State University, Fargo, ND, USA, 2015. [Google Scholar]
- Wu, X.F.; Zholobko, O. Experimental study of the probabilistic fatigue residual strength of a carbon fiber-reinforced polymer matrix composite. J. Compos. Sci. 2020, 4, 173. [Google Scholar] [CrossRef]
- Beer, F.; Johnston, E.R.; Dewolf, J.T.; Mazurek, D.F. Mechanics of Materials, 5th ed.; McGraw Hill: New York, NY, USA, 2009. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.-F.; Zhao, Y.; Zholobko, O. Stress-Function Variational Method for Accurate Free-Edge Interfacial Stress Analysis of Adhesively Bonded Single-Lap Joints and Single-Sided Joints. J. Compos. Sci. 2021, 5, 197. https://doi.org/10.3390/jcs5080197
Wu X-F, Zhao Y, Zholobko O. Stress-Function Variational Method for Accurate Free-Edge Interfacial Stress Analysis of Adhesively Bonded Single-Lap Joints and Single-Sided Joints. Journal of Composites Science. 2021; 5(8):197. https://doi.org/10.3390/jcs5080197
Chicago/Turabian StyleWu, Xiang-Fa, Youhao Zhao, and Oksana Zholobko. 2021. "Stress-Function Variational Method for Accurate Free-Edge Interfacial Stress Analysis of Adhesively Bonded Single-Lap Joints and Single-Sided Joints" Journal of Composites Science 5, no. 8: 197. https://doi.org/10.3390/jcs5080197
APA StyleWu, X. -F., Zhao, Y., & Zholobko, O. (2021). Stress-Function Variational Method for Accurate Free-Edge Interfacial Stress Analysis of Adhesively Bonded Single-Lap Joints and Single-Sided Joints. Journal of Composites Science, 5(8), 197. https://doi.org/10.3390/jcs5080197