Influence of Rigid Brazilian Natural Fiber Arrangements in Polymer Composites: Energy Absorption and Ballistic Efficiency
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Individual Performance of Epoxy/Piassava Composites
3.2. MAS Application of Epoxy/Piassava Composites
3.3. Mechanisms of Energy Absorption
4. Discussion
5. Conclusions
- For individual performance of the composites, the energy absorbed by them ranged from 167 to 222 J. Furthermore, it was statistically proven that the fiber arrangement did not influence the energy absorption. However, in terms of structural integrity, conditions that provided reinforcement in more than one direction rise as most promising. The limit velocity parameter was calculated for all conditions and presented values of the same magnitude as traditional materials.
- For the efficiency of MAS, all conditions were considered efficient according to NIJ standard as none of the systems were perforated and indentation depths were below the limit of 44 mm. On the other hand, contrary to what was expected, the structural integrity was an issue for all conditions. This was associated with the design of MAS itself, alternating materials with high shock impedance with ones with low impedance.
- Failure of micromechanisms, such as fiber breakage, fiber/matrix delamination, and pullout, were verified as the main failure mechanisms in these materials. Furthermore, it was verified that the absorption of the cloud of fragments was generated in the ballistic impact by the piassava fiber through mechanical incrustation.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mahoney, P.F.; Ryan, J.; Brooks, A.J.; Schwab, C.W. Ballistic Trauma—A Practical Guide, 2nd ed.; Springer: Berlim, Germany, 2005. [Google Scholar] [CrossRef]
- Wang, L.; Kanesalingam, S.; Nayak, R.; Padhye, R. Recent trends in ballistic protection. TLIST 2014, 3, 37–47. [Google Scholar] [CrossRef]
- Hani, A.; Roslan, A.; Mariatti, J.; Maziah, M. Body armor technology: A review of materials, construction techniques and enhancement of ballistic energy absorption. Trans. Tech. Publ. 2012, 488–489, 806–812. [Google Scholar] [CrossRef]
- Akella, K.; Naik, N.K. Composite armor—A review. J. Indian Inst. Sci. 2015, 95, 297–312. [Google Scholar]
- Benzait, Z.; Trabzon, L. A review of recent research on materials used in polymer-matrix composites for body armor application. J. Compos. Mater. 2018, 52, 3241–3263. [Google Scholar] [CrossRef]
- Rohen, L.A.; Margem, F.M.; Monteiro, S.N.; Vieira, C.M.F.; De Araujo, B.M.; Lima, E.S. Ballistic efficiency of an individual epoxy composite reinforced with sisal fibers in multilayered armor. Mater. Res. 2015, 18, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, S.N.; Braga, F.O.; Lima, E.P., Jr.; Louro, L.H.L.; Drelich, J.W. Promising curaua fiber-reinforced polyester composite for high-impact ballistic multilayered armor. Pol. Eng. Sci. 2017, 57, 947–954. [Google Scholar] [CrossRef]
- Nurazzi, N.M.; Asraf, M.R.M.; Khalina, A.; Abdullah, N.; Aisyah, H.A.; Ayu Rafiqah, S.; Sabaruddin, F.A.; Kamarudin, S.H.; Norrrahim, M.N.F.; Ilyas, R.A.; et al. A review on natural fiber reinforced polymer composite for bullet proof and ballistic applications. Polymers 2021, 13, 646. [Google Scholar] [CrossRef] [PubMed]
- Naveen, J.; Jayakrishna, K.; Hameed Sultan, M.T.B.; Amir, S.M.M. Ballistic Performance of Natural Fiber Based Soft and Hard Body Armour—A Mini Review. Front. Mater. 2020, 7, 1–6. [Google Scholar] [CrossRef]
- Monteiro, S.N.; Drelich, J.W.; Lopera, H.A.C.; Nascimento, L.F.C.; da Luz, F.S.; da Silva, L.C.; dos Santos, J.L.; da Costa Garcia Filho, F.; de Assis, F.S.; Lima, É.P.; et al. Natural Fibers Reinforced Polymer Composites Applied in Ballistic Multilayered Armor for Personal Protection—An Overview; The Minerals, Metals and Materials Series; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar] [CrossRef]
- Naveen, J.; Jawaid, M.; Zainudin, E.; Sultan, M.T.; Yahaya, R. Effect of graphene nanoplatelets on the ballistic performance of hybrid Kevlar/Cocos nucifera sheath-reinforced epoxy composites. Text. Res. J. 2019, 89, 4349–4362. [Google Scholar] [CrossRef]
- Luz, F.S.; Filho, F.C.G.; Oliveira, M.S.; Nascimento, L.F.C.; Monteiro, S.N. Composites with natural fibers and conventional materials applied in a hard armor: A comparison. Polymers 2020, 12, 1920. [Google Scholar] [CrossRef]
- Nayak, S.Y.; Sultan, M.T.H.; Shenoy, S.B.; Kini, C.R.; Samant, R.; Shah, A.U.M.; Amuthakkannan, P. Potential of natural fibers in composites for ballistic applications—A review. J. Nat. Fibers 2020. [CrossRef]
- Satyanarayana, K.G.; Guimarães, J.L.; Wypych, F. Studies on lignocellulosic fiber of Brazil. Part I: Source, production, morphology, properties and applications. Compos. Part A 2007, 38, 694–709. [Google Scholar] [CrossRef]
- Nascimento, D.C.O.; Ferreira, A.S.; Monteiro, S.N.; Aquino, R.C.M.P.; Satyanarayana, G.K. Studies on the characterization of fibers and their epoxy composites. Compos. Part A 2012, 43, 353–362. [Google Scholar] [CrossRef]
- Garcia Filho, F.C.; Monteiro, S.N. Piassava fiber as an epoxy matrix composite reinforcement for ballistic armor applications. JOM 2019, 71, 801–808. [Google Scholar] [CrossRef]
- Garcia Filho, F.C.; Oliveira, M.S.; Pereira, A.C.; Nascimento, L.F.C.; Matheus, J.R.G.; Monteiro, S.N. Ballistic behavior of epoxy matrix composites reinforced with piassava fiber against high energy ammunition. J. Mater. Res. Technol. 2020, 9, 1734–1741. [Google Scholar] [CrossRef]
- Kalia, S.; Kaith, B.S.; Kaur, I. Pretreatments of natural fibers and their application as reinforcing material in polymer composites: A review. Polym. Eng. Sci. 2009, 49, 1253–1272. [Google Scholar] [CrossRef]
- Aquino, R.C.M.P.; Monteiro, S.N.; D’Almeida, J.R.M. Evaluation of the critical fiber length of piassava (Attalea funifera) fibers using the pullout test. J. Mater. Sci. Lett. 2003, 22, 1495–1497. [Google Scholar] [CrossRef]
- Gomes, A.V.; Louro, L.H.L.; Costa, C.R.C. Ballisctic behavior of alumina with niobia additions. J. Phys. 2006, 134, 1009–1014. [Google Scholar] [CrossRef]
- NIJ Standards-0101.04. In Ballistic Resistance of Body Armor; US. Department of Justice/Office of Justice Programs-National Institute of Justice: Washington, DC, USA, 2000.
- Sthle, L.; Wold, S. Analysis of variance (ANOVA). Chemom. Intell. Lab. Syst. 1989, 6, 259–272. [Google Scholar] [CrossRef]
- Tukey, J.W. Comparing individual means in the analysis of variance. Biometrics 1949, 5, 99–114. [Google Scholar] [CrossRef]
- Morye, S.S.; Hine, P.J.; Duckett, R.A.; Carr, D.J.; Ward, I.M. Modeling of the Energy Absorption by Polymer Composites Upon Ballistic Impact. Compos. Sci. Technol. 2000, 60, 2631–2642. [Google Scholar] [CrossRef]
- Braga, F.O.; Bolzan, L.T.; Lima, E.P., Jr.; Monteiro, S.N. Performance of natural curaua fiber-reinforced polyester composites under 7.62 mm bullet impact as stand-alone ballistic armor. J. Mater. Res. Technol. 2017, 6, 323–328. [Google Scholar] [CrossRef]
- Hui, D.; Dutta, P.K. A new concept of shock mitigation by impedance-graded materials. Compos. Part B 2011, 42, 2181–2184. [Google Scholar] [CrossRef]
- Meyers, M.A. Dynamic Behavior of Materials, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 1994. [Google Scholar] [CrossRef]
- Bandaru, A.K.; Ahmad, S. Modeling of progressive damage for composites under ballistic impact. Compos. Part B 2016, 93, 75–87. [Google Scholar] [CrossRef]
- Yen, C.-F. A ballistic material model for continuous-fiber reinforced composites. Int. J. Impact Eng. 2012, 46, 11–22. [Google Scholar] [CrossRef] [Green Version]
- Naik, N.K.; Shrirao, P. Composite structures under ballistic impact. Compos. Struct. 2004, 1–4, 579–590. [Google Scholar] [CrossRef]
- Lee, B.L.; Walsh, T.F.; Won, S.T.; Patts, H.M.; Song, J.W.; Mayer, A.H. Penetration failure mechanisms of armor-grade fiber composites under impact. J. Compos. Mater. 2001, 35, 1605–1633. [Google Scholar] [CrossRef]
- Monteiro, S.N.; Lima, E.P., Jr.; Louro, L.H.L.; Silva, L.C.; Drelich, J.W. Unlocking function of aramid fibers in multilayered ballistic armor. Met. Mater. Trans. A 2014, 46A, 37–40. [Google Scholar] [CrossRef]
- Pereira, A.C.; Assis, F.S.; Garcia Filho, F.C.; Oliveira, M.S.; Lima, E.S.; Lopera, H.A.C.; Monteiro, S.N. Evaluation of the projectile’s loss of energy in polyester composite reinforced with fique fiber and fabric. Mater. Res. 2019, 22. [Google Scholar] [CrossRef]
- Oliveira, M.S.; Luz, F.S.; Souza, A.T.; Demosthenes, L.C.C.; Pereira, A.C.; Garcia Filho, F.C.; Braga, F.O.; Figueiredo, A.B.H.; Monteiro, S.N. Tucum fiber from Amazon Astrocaryum vulgare palm tree: Novel reinforcement for polymer composites. Polymers 2020, 12, 2259. [Google Scholar] [CrossRef]
- Oliveira, M.S.; Garcia Filho, F.C.; Luz, F.S.; Pereira, A.C.; Demosthenes, L.C.C.; Nascimento, L.F.C.; Lopera, H.A.C.; Monteiro, S.N. Statistical analysis of notch toughness of epoxy matrix composites reinforced with fique fabric. J. Mater. Res. Technol. 2019, 8, 6051–6057. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, X. Investigation on energy absorption efficiency of each layer in ballistic armour panel for applications in hybrid design. Compos. Struct. 2017, 164, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Braga, F.O.; Lopes, P.H.L.M.; Luz, F.S.; Lima, E.P., Jr.; Monteiro, S.N. Influence of the areal density of layers in the ballistic response of a multilayered armor system using box-behken statistical design. In Characterization of Minerals, Metals, and Materials; Li, B., Li, J., Ikhmayies, S., Zhang, M., Kalay, Y.E., Carpenter, J.S., Hwang, J.-Y., Monteiro, S.N., Firrao, D., Brown, A., et al., Eds.; The Minerals, Metals & Materials Series; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Jena, P.K.; Ramanjeneyulu, K.; Siva Kumar, K.; Balakrishna Bhat, T. Ballistic studies on layered structures. Mater. Des. 2009, 30, 1922–1929. [Google Scholar] [CrossRef]
- Ubeyli, M.; Orhan Yildirim, R.; Ogel, B. On the comparison of the ballistic performance of steel and laminated composite armors. Mater. Des. 2007, 28, 1257–1262. [Google Scholar] [CrossRef]
Nomenclature | Fiber Arrangement |
---|---|
LA2D | Long and aligned; arranged in three layers, each layer rotated 90° from the previous one; cross ply (two directions) |
LA1D | Long and aligned fibers (one direction) |
LRS | Long and randomly scattered fibers |
SRS | Short and randomly scattered fibers |
Variation Causes | DF | SS | MS | F | Fc |
---|---|---|---|---|---|
Treatments | 3 | 537.7 | 179.2 | 0.51 | 3.49 |
Residue | 12 | 4219.3 | 351.6 | - | - |
Total | 15 | 4756.9 | - | - | - |
Condition | LA2D | LA1D | LRS | SRS |
---|---|---|---|---|
LA2D | 0 | 16 | 11 | 10 |
LA1D | 16 | 0 | 5 | 6 |
LRS | 11 | 5 | 0 | 1 |
SRS | 10 | 6 | 1 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia Filho, F.C.; Luz, F.S.; Oliveira, M.S.; Bezerra, W.B.A.; Barbosa, J.D.V.; Monteiro, S.N. Influence of Rigid Brazilian Natural Fiber Arrangements in Polymer Composites: Energy Absorption and Ballistic Efficiency. J. Compos. Sci. 2021, 5, 201. https://doi.org/10.3390/jcs5080201
Garcia Filho FC, Luz FS, Oliveira MS, Bezerra WBA, Barbosa JDV, Monteiro SN. Influence of Rigid Brazilian Natural Fiber Arrangements in Polymer Composites: Energy Absorption and Ballistic Efficiency. Journal of Composites Science. 2021; 5(8):201. https://doi.org/10.3390/jcs5080201
Chicago/Turabian StyleGarcia Filho, Fabio C., Fernanda S. Luz, Michelle S. Oliveira, Wendell B. A. Bezerra, Josiane D. V. Barbosa, and Sergio N. Monteiro. 2021. "Influence of Rigid Brazilian Natural Fiber Arrangements in Polymer Composites: Energy Absorption and Ballistic Efficiency" Journal of Composites Science 5, no. 8: 201. https://doi.org/10.3390/jcs5080201
APA StyleGarcia Filho, F. C., Luz, F. S., Oliveira, M. S., Bezerra, W. B. A., Barbosa, J. D. V., & Monteiro, S. N. (2021). Influence of Rigid Brazilian Natural Fiber Arrangements in Polymer Composites: Energy Absorption and Ballistic Efficiency. Journal of Composites Science, 5(8), 201. https://doi.org/10.3390/jcs5080201