Fibre-Reinforced Geopolymer Composites Micro-Nanochemistry by SEM-EDS Simulations
Abstract
:1. Introduction
2. Materials and Methods
2.1. SEM-EDS Monte Carlo Method
2.2. Fibre-Reinforced Geopolymer Model
3. Results and Discussion
3.1. Fiber Core Analysis
3.2. Fibre-Geopolymer Interface Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Davidovits, J. Geopolymers. J. Therm. Anal. 1991, 37, 1633–1656. [Google Scholar] [CrossRef]
- Catauro, M.; Tranquillo, E.; Barrino, F.; Dal Poggetto, G.; Blanco, I.; Cicala, G.; Ognibene, G.; Recca, G. Mechanical and thermal properties of fly ash-filled geopolymers. J. Therm. Anal. Calorim. 2019, 138, 3267–3276. [Google Scholar] [CrossRef]
- Samal, S.; Blanco, I. An Application Review of Fiber-Reinforced Geopolymer Composite. Fibers 2021, 9, 23. [Google Scholar] [CrossRef]
- Ranjbar, N.; Zhang, M. Fiber-reinforced geopolymer composites: A review. Cem. Concr. Compos. 2020, 107, 103498. [Google Scholar] [CrossRef]
- Lin, T.; Jia, D.; He, P.; Wang, M. In situ crack growth observation and fracture behavior of short carbon fiber reinforced geopolymer matrix composites. Mater. Sci. Eng. A 2010, 527, 2404–2407. [Google Scholar] [CrossRef]
- Monaldo, E.; Nerilli, F.; Vairo, G. Basalt-based fiber-reinforced materials and structural applications in civil engineering. Compos. Struct. 2019, 214, 246–263. [Google Scholar] [CrossRef]
- Fiore, V.; Scalici, T.; Di Bella, G.; Valenza, A. A review on basalt fibre and its composites. Compos. Part B Eng. 2015, 74, 74–94. [Google Scholar] [CrossRef]
- Akono, A.T.; Koric, S.; Kriven, W.M. Influence of pore structure on the strength behavior of particle- and fiber-reinforced metakaolin-based geopolymer composites. Cem. Concr. Compos. 2019, 104, 103361. [Google Scholar] [CrossRef]
- Davidovits, J. Polymère Minéral 1979. French Patent, No. FR2464227A1, 7 July 1979. [Google Scholar]
- Davidovits, J. Geopolymer Chemistry and Applications, 5th ed.; Davidovits, J., Ed.; Institut Géopolymère: Saint-Quentin, France, 2020; ISBN 9782954453118. [Google Scholar]
- Ulian, G.; Valdrè, G.; Corno, M.; Ugliengo, P. DFT investigation of structural and vibrational properties of type B and mixed A-B carbonated hydroxylapatite. Am. Mineral. 2014, 99, 117–127. [Google Scholar] [CrossRef]
- Ulian, G.; Valdrè, G. Density functional investigation of the thermophysical and thermochemical properties of talc [Mg3Si4O10 (OH)2]. Phys. Chem. Miner. 2015, 42, 151–162. [Google Scholar] [CrossRef]
- Duxson, P.; Provis, J.L.; Lukey, G.C.; Mallicoat, S.W.; Kriven, W.M.; Van Deventer, J.S.J. Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids Surf. A Physicochem. Eng. Asp. 2005, 269, 47–58. [Google Scholar] [CrossRef]
- Duxson, P.; Fernández-Jiménez, A.; Provis, J.L.; Lukey, G.C.; Palomo, A.; van Deventer, J.S.J. Geopolymer technology: The current state of the art. J. Mater. Sci. 2007, 42, 2917–2933. [Google Scholar] [CrossRef]
- Giannopoulou, I.; Panias, D. Hydrolytic stability of sodium silicate gels in the presence of aluminum. J. Mater. Sci. 2010, 45, 5370–5377. [Google Scholar] [CrossRef]
- Moro, D.; Ulian, G.; Valdrè, G. Nanoscale cross-correlated AFM, Kelvin probe, elastic modulus and quantum mechanics investigation of clay mineral surfaces: The case of chlorite. Appl. Clay Sci. 2016, 131, 175–181. [Google Scholar] [CrossRef]
- Gatti, A.; Valdre, G.; Tombesi, A. Importance of microanalysis in understanding mechanism of transformation in active glassy biomaterials. J. Biomed. Mater. Res. 1996, 31, 475–480. [Google Scholar] [CrossRef]
- Valdrè, G.; Botton, G.A.; Brown, L.M. High spatial resolution PEELS characterization of FeAl nanograins prepared by mechanical alloying. Acta Mater. 1999, 47, 2303–2311. [Google Scholar] [CrossRef]
- Borgia, G.C.; Brown, R.J.S.; Fantazzini, P.; Mesini, E.; Valdre, G. Diffusion-weighted spatial information from 1 H relaxation in restricted geometries. Nuovo Cim. D 1992, 14, 745–759. [Google Scholar] [CrossRef]
- Samal, S.; Kolinova, M.; Rahier, H.; Poggetto, G.D.; Blanco, I. Investigation of the Internal Structure of Fiber Reinforced Geopolymer Composite under Mechanical Impact: A Micro Computed Tomography (µCT) Study. Appl. Sci. 2019, 9, 516. [Google Scholar] [CrossRef] [Green Version]
- Frydrych, M.; Hýsek, Š.; Fridrichová, L.; Le Van, S.; Herclík, M.; Pechočiaková, M.; Le Chi, H.; Louda, P. Impact of Flax and Basalt Fibre Reinforcement on Selected Properties of Geopolymer Composites. Sustainability 2019, 12, 118. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Wan, C.; Xu, M.; Chen, J. Review of Basalt Fiber-Reinforced Concrete in China: Alkali Resistance of Fibers and Static Mechanical Properties of Composites. Adv. Mater. Sci. Eng. 2018, 9198656. [Google Scholar] [CrossRef] [Green Version]
- Ritchie, N.W.M. Using DTSA-II to Simulate and Interpret Energy Dispersive Spectra from Particles. Microsc. Microanal. 2010, 16, 248–258. [Google Scholar] [CrossRef] [Green Version]
- Ritchie, N.W.M. Efficient Simulation of Secondary Fluorescence Via NIST DTSA-II Monte Carlo. Microsc. Microanal. 2017, 23, 618–633. [Google Scholar] [CrossRef]
- Moro, D.; Ulian, G.; Valdrè, G. Monte Carlo SEM-EDS micro- and nanoanalysis of ultrathin gold leaves in glass mosaic tesserae: Thickness effects and measurement strategy. Measurement 2018, 129, 211–217. [Google Scholar] [CrossRef]
- Valdrè, G.; Moro, D.; Ulian, G. Monte Carlo simulation of the effect of shape and thickness on SEM-EDS microanalysis of asbestos fibres and bundles: The case of anthophyllite, tremolite and actinolite. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Konstanz, Germany, 7–11 May 2018; Volume 304. [Google Scholar]
- Moro, D.; Ulian, G.; Valdrè, G. SEM-EDS microanalysis of ultrathin glass and metal fragments: Measurement strategy by Monte Carlo simulation in Cultural Heritage and Archaeology. Int. J. Conserv. Sci. 2020, 11, 223–232. [Google Scholar]
- Myklebust, R.; Newbury, D.; Yakowitz, H. NBS Monte Carlo Electron Trajectory Calculation Program; Heinrich, K., Yakowitz, H., Newbury, D., Eds.; National Bureau of Standards Special Publication: Washington, DC, USA, 1976. [Google Scholar]
- Czyżewski, Z.; MacCallum, D.O.; Romig, A.; Joy, D.C. Calculations of Mott scattering cross section. J. Appl. Phys. 1990, 68, 3066. [Google Scholar] [CrossRef]
- Jablonski, A.; Salvat, F.; Powell, C.J. NIST Electron Elastic-Scattering Cross-Section Database 2010; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2010. [Google Scholar]
- Ritchie, N.W.M. Spectrum Simulation in DTSA-II. Microsc. Microanal. 2009, 15, 454–468. [Google Scholar] [CrossRef] [Green Version]
- Joy, D.C.; Luo, S. An empirical stopping power relationship for low-energy electrons. Scanning 1989, 11, 176–180. [Google Scholar] [CrossRef]
- Bote, D.; Salvat, F.; Jablonski, A.; Powell, C.J. Cross sections for ionization of K, L and M shells of atoms by impact of electrons and positrons with energies up to 1 GeV: Analytical formulas. At. Data Nucl. Data Tables 2009, 95, 871–909. [Google Scholar] [CrossRef]
- Bote, D.; Salvat, F. Calculations of inner-shell ionization by electron impact with the distorted-wave and plane-wave Born approximations. Phys. Rev. A 2008, 77, 042701. [Google Scholar] [CrossRef]
- Perkins, S.T.; Cullen, D.E.; Chen, M.H.; Rathkopf, J.; Scofield, J.; Hubbell, J.H. Tables and Graphs of Atomic Subshell and Relaxation Data Derived from the LLNL Evaluated Atomic Data Library (EADL), Z = 1–100; Lawrence Livermore National Laboratory: Berkley, CA, USA, 1991. [Google Scholar]
- Acosta, E.; Llovet, X.; Salvat, F. Monte Carlo simulation of bremsstrahlung emission by electrons. Appl. Phys. Lett. 2002, 80, 3228. [Google Scholar] [CrossRef]
- Salvat, F.; Fernandez-Varea, J.M.; Sempau, J. PENELOPE 2014: A Code System for Monte Carlo Simulation of Electron and Photon Transport; OECD: Issy-les-Moulineaux, France, 2015. [Google Scholar]
- Seltzer, S.M.; Berger, M.J. Bremsstrahlung energy spectra from electrons with kinetic energy 1 keV–10 GeV incident on screened nuclei and orbital electrons of neutral atoms with Z = 1–100. At. Data Nucl. Data Tables 1986, 35, 345–418. [Google Scholar] [CrossRef]
- Seltzer, S.M.; Berger, M.J. Bremsstrahlung spectra from electron interactions with screened atomic nuclei and orbital electrons. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 1985, 12, 95–134. [Google Scholar] [CrossRef]
- Chantler, C.T.; Olsen, K.; Dragoset, R.A.; Chang, J.; Kishore, A.R.; Kotochigova, S.A.; Zucker, D.S. X-ray Form Factor, Attenuation, and Scattering Tables (Version 2.1) 2005; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Lipatov, Y.V.; Gutnikov, S.I.; Manylov, M.S.; Zhukovskaya, E.S.; Lazoryak, B.I. High alkali-resistant basalt fiber for reinforcing concrete. Mater. Des. 2015, 73, 60–66. [Google Scholar] [CrossRef]
- Tang, C.; Jiang, H.; Zhang, X.; Li, G.; Cui, J. Corrosion Behavior and Mechanism of Basalt Fibers in Sodium Hydroxide Solution. Materials 2018, 11, 1381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pastsuk, V.; Kiisk, M.; Lõhmus, R.; Merisalu, M.; Kovaljov, S.; Biland, A.; Gulik, V. Selection of basalt fiber with resistance to concrete alkaline environment. SN Appl. Sci. 2020, 2, 1–17. [Google Scholar] [CrossRef]
- Sim, J.; Park, C.; Moon, D.Y. Characteristics of basalt fiber as a strengthening material for concrete structures. Compos. Part B Eng. 2005, 36, 504–512. [Google Scholar] [CrossRef]
- Li, W.; Xu, J. Mechanical properties of basalt fiber reinforced geopolymeric concrete under impact loading. Mater. Sci. Eng. A 2009, 505, 178–186. [Google Scholar] [CrossRef]
- Dellisanti, F.; Valdrè, G. The role of microstrain on the thermostructural behaviour of industrial kaolin deformed by ball milling at low mechanical load. Int. J. Miner. Process. 2012, 102–103, 69–77. [Google Scholar] [CrossRef]
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | Na2O | K2O | TiO2 | P2O5 | MnO |
---|---|---|---|---|---|---|---|---|---|
50 | 15 | 14 | 9 | 6 | 2.3 | 1.7 | 1.6 | 0.2 | 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moro, D.; Ulian, G.; Valdrè, G. Fibre-Reinforced Geopolymer Composites Micro-Nanochemistry by SEM-EDS Simulations. J. Compos. Sci. 2021, 5, 214. https://doi.org/10.3390/jcs5080214
Moro D, Ulian G, Valdrè G. Fibre-Reinforced Geopolymer Composites Micro-Nanochemistry by SEM-EDS Simulations. Journal of Composites Science. 2021; 5(8):214. https://doi.org/10.3390/jcs5080214
Chicago/Turabian StyleMoro, Daniele, Gianfranco Ulian, and Giovanni Valdrè. 2021. "Fibre-Reinforced Geopolymer Composites Micro-Nanochemistry by SEM-EDS Simulations" Journal of Composites Science 5, no. 8: 214. https://doi.org/10.3390/jcs5080214
APA StyleMoro, D., Ulian, G., & Valdrè, G. (2021). Fibre-Reinforced Geopolymer Composites Micro-Nanochemistry by SEM-EDS Simulations. Journal of Composites Science, 5(8), 214. https://doi.org/10.3390/jcs5080214