Microwave Synthesis of MnO2-Lignin Composite Electrodes for Supercapacitors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microwave-Irradiated Green Composite Electrode Preparation
2.2. Preparation of PVA/H3PO4 Gel Electrolyte
2.3. Materials’ Characterization
3. Results and Discussion
3.1. Materials’ Characterization
3.1.1. Scanning Electron Microscope (SEM)
3.1.2. FTIR Spectroscopy
3.1.3. UV-Vis Spectroscopy
3.1.4. Powder X-ray Diffraction
3.1.5. Energy Dispersive X-ray Spectroscopy
3.1.6. Electrochemical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hall, P.J.; Mirzaeian, M.; Fletcher, S.I.; Sillars, F.B.; Rennie, A.J.R.; Shitta-Bey, G.O.; Wilson, G.; Cruden, A.; Carter, R. Energy storage in electrochemical capacitors: Designing functional materials to improve performance. Energy Environ. Sci. 2010, 3, 1238–1251. [Google Scholar] [CrossRef]
- Yan, J.; Wang, Q.; Wei, T.; Fan, Z. Recent Advances in Design and Fabrication of Electrochemical Supercapacitors with High Energy Densities. Adv. Energy Mater. 2014, 4, 1300816. [Google Scholar] [CrossRef]
- Inganäs, O.; Admassie, S. 25th Anniversary Article: Organic Photovoltaic Modules and Biopolymer Supercapacitors for Supply of Renewable Electricity: A Perspective from Africa. Adv. Mater. 2014, 26, 830–848. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Xu, J.; Chen, D.; Shen, G. Flexible electronics based on inorganic nanowires. Chem. Soc. Rev. 2015, 44, 161–192. [Google Scholar] [CrossRef]
- Li, L.; Wu, Z.; Yuan, S.; Zhang, X.-B. Advances and challenges for flexible energy storage and conversion devices and systems. Energy Environ. Sci. 2014, 7, 2101–2122. [Google Scholar] [CrossRef]
- Liu, Q.-C.; Xu, J.-J.; Xu, D.; Zhang, X.-B. Flexible lithium–oxygen battery based on a recoverable cathode. Nat. Commun. 2015, 6, 7892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Jha, S.; Raut, A.; Zhang, W.; Liang, H. Performance Characteristics of Lubricants in Electric and Hybrid Vehicles: A Review of Current and Future Needs. Front. Mech. Eng. 2020, 6, 82. [Google Scholar] [CrossRef]
- Jha, S.; Chen, Y.; Zhang, B.; Elwany, A.; Parkinson, D.; Liang, H. Influence of morphology on electrochemical and capacity performance of open-porous structured electrodes. J. Appl. Electrochem. 2020, 50, 231–244. [Google Scholar] [CrossRef]
- Jha, S.; Ponce, V.; Seminario, J.M. Investigating the effects of vacancies on self-diffusion in silicon clusters using classical molecular dynamics. J. Mol. Model. 2018, 24, 290. [Google Scholar] [CrossRef]
- Renner, P.; Jha, S.; Chen, Y.; Raut, A.; Mehta, S.G.; Liang, H. A Review on Corrosion and Wear of Additively Manufactured Alloys. J. Tribol. 2021, 143, 050802. [Google Scholar] [CrossRef]
- Yang, Z.; Tian, J.; Yin, Z.; Cui, C.; Qian, W.; Wei, F. Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor: A review. Carbon 2019, 141, 467–480. [Google Scholar] [CrossRef]
- Jha, S.; Mehta, S.; Chen, E.; Sankar, S.S.; Kundu, S.; Liang, H. Bimetallic tungstate nanoparticle-decorated-lignin electrodes for flexible supercapacitors. Mater. Adv. 2020, 1, 2124–2135. [Google Scholar] [CrossRef]
- Jha, S.; Mehta, S.; Chen, Y.; Renner, P.; Sankar, S.S.; Parkinson, D.; Kundu, S.; Liang, H. NiWO4 nanoparticle decorated lignin as electrodes for asymmetric flexible supercapacitors. J. Mater. Chem. C 2020, 8, 3418–3430. [Google Scholar] [CrossRef]
- Mehta, S.; Jha, S.; Liang, H. Lignocellulose materials for supercapacitor and battery electrodes: A review. Renew. Sustain. Energy Rev. 2020, 134, 110345. [Google Scholar] [CrossRef]
- Archuleta, M.M. Toxicity of materials used in the manufacture of lithium batteries. J. Power Sources 1995, 54, 138–142. [Google Scholar] [CrossRef] [Green Version]
- Inagaki, M.; Konno, H.; Tanaike, O. Carbon materials for electrochemical capacitors. J. Power Sources 2010, 195, 7880–7903. [Google Scholar] [CrossRef]
- Zhang, W.; Yin, J.; Lin, Z.; Lin, H.; Lu, H.; Wang, Y.; Huang, W. Facile preparation of 3D hierarchical porous carbon from lignin for the anode material in lithium ion battery with high rate performance. Electrochim. Acta 2015, 176, 1136–1142. [Google Scholar] [CrossRef]
- Zhang, X.; Glüsen, A.; Garcia-Valls, R. Porous lignosulfonate membranes for direct methanol fuel cells. J. Membr. Sci. 2006, 276, 301–307. [Google Scholar] [CrossRef] [Green Version]
- Juikar, S.J.; Vigneshwaran, N. Extraction of nanolignin from coconut fibers by controlled microbial hydrolysis. Ind. Crop. Prod. 2017, 109, 420–425. [Google Scholar] [CrossRef]
- Ma, W.; Chen, S.; Yang, S.; Chen, W.; Weng, W.; Cheng, Y.; Zhu, M. Flexible all-solid-state asymmetric supercapacitor based on transition metal oxide nanorods/reduced graphene oxide hybrid fibers with high energy density. Carbon 2017, 113, 151–158. [Google Scholar] [CrossRef]
- Jha, S.; Mehta, S.; Chen, Y.; Likhari, R.; Stewart, W.; Parkinson, D.; Liang, H. Design and synthesis of high performance flexible and green supercapacitors made of manganese-dioxide-decorated alkali lignin. Energy Storage 2020, 2, e184. [Google Scholar] [CrossRef]
- Jha, S.; Mehta, S.; Chen, Y.; Ma, L.; Renner, P.; Parkinson, D.Y.; Liang, H. Design and Synthesis of Lignin-Based Flexible Supercapacitors. ACS Sustain. Chem. Eng. 2020, 8, 498–511. [Google Scholar] [CrossRef]
- Zhang, Q.-Z.; Zhang, D.; Miao, Z.-C.; Zhang, X.-L.; Chou, S.-L. Research Progress in MnO2–Carbon Based Supercapacitor Electrode Materials. Small 2018, 14, 1702883. [Google Scholar] [CrossRef] [PubMed]
- Meher, S.K.; Rao, G.R. Enhanced activity of microwave synthesized hierarchical MnO2 for high performance supercapacitor applications. J. Power Sources 2012, 215, 317–328. [Google Scholar] [CrossRef]
- Wang, P.; Zhao, Y.-J.; Wen, L.-X.; Chen, J.-F.; Lei, Z.-G. Ultrasound–Microwave-Assisted Synthesis of MnO2 Supercapacitor Electrode Materials. Ind. Eng. Chem. Res. 2014, 53, 20116–20123. [Google Scholar] [CrossRef]
- Liu, D.; Wang, Y.; Jia, B.; Wei, J.; Liu, C.; Zhu, J.; Tang, S.; Wu, Z.; Chen, G. Microwave-Assisted Hydrothermal Preparation of Corn Straw Hydrochar as Supercapacitor Electrode Materials. ACS Omega 2020, 5, 26084–26093. [Google Scholar] [CrossRef]
- Seong, K.-d.; Jin, X.; Kim, D.; Kim, J.M.; Ko, D.; Cho, Y.; Hwang, M.; Kim, J.-H.; Piao, Y. Ultrafast and scalable microwave-assisted synthesis of activated hierarchical porous carbon for high-performance supercapacitor electrodes. J. Electroanal. Chem. 2020, 874, 114464. [Google Scholar] [CrossRef]
- Mylarappa, M.; Lakshmi, V.; Mahesh K R, V.; H P, N.; Raghavendra, N. A facile hydrothermal recovery of nano sealed MnO 2 particle from waste batteries: An advanced material for electrochemical and environmental applications. IOP Conf. Ser. Mater. Sci. Eng. 2016, 149, 012178. [Google Scholar] [CrossRef]
- Mayerhöfer, T. Wave Optics in Infrared Spectroscopy. 2021. Available online: https://www.researchgate.net/project/Book-Project-Wave-Optics-in-Infrared-Spectroscopy (accessed on 12 August 2021).
- Azimvand, J.; Didehban, K.; Mirshokrai, S.A. Preparation and characterization of lignin polymeric nanoparticles using the green solvent Ethylene glycol: Acid precipitation technology. BioResources 2018, 13, 2887–2897. [Google Scholar] [CrossRef]
- Nandiyanto, A.B.D.; Oktiani, R.; Ragadhita, R. How to read and interpret FTIR spectroscope of organic material. Indones. J. Sci. Technol. 2019, 4, 97–118. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, Z.; Zhang, Y.; Pan, H.; Tao, L. Adsorption of methylene blue on organosolv lignin from rice straw. Procedia Environ. Sci. 2016, 31, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.-Y.; Huang, M.; Ma, H.-L.; Zhang, Z.-Q.; Gao, J.-M.; Zhu, Y.-L.; Han, X.-J.; Guo, X.-Y. Preparation of a carbon-based solid acid catalyst by sulfonating activated carbon in a chemical reduction process. Molecules 2010, 15, 7188–7196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musil, M.; Choi, B.; Tsutsumi, A. Morphology and Electrochemical Properties of α-, β-, γ-, and δ-MnO2Synthesized by Redox Method. J. Electrochem. Soc. 2015, 162, A2058–A2065. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehta, S.; Jha, S.; Huang, D.; Arole, K.; Liang, H. Microwave Synthesis of MnO2-Lignin Composite Electrodes for Supercapacitors. J. Compos. Sci. 2021, 5, 216. https://doi.org/10.3390/jcs5080216
Mehta S, Jha S, Huang D, Arole K, Liang H. Microwave Synthesis of MnO2-Lignin Composite Electrodes for Supercapacitors. Journal of Composites Science. 2021; 5(8):216. https://doi.org/10.3390/jcs5080216
Chicago/Turabian StyleMehta, Siddhi, Swarn Jha, Dali Huang, Kailash Arole, and Hong Liang. 2021. "Microwave Synthesis of MnO2-Lignin Composite Electrodes for Supercapacitors" Journal of Composites Science 5, no. 8: 216. https://doi.org/10.3390/jcs5080216
APA StyleMehta, S., Jha, S., Huang, D., Arole, K., & Liang, H. (2021). Microwave Synthesis of MnO2-Lignin Composite Electrodes for Supercapacitors. Journal of Composites Science, 5(8), 216. https://doi.org/10.3390/jcs5080216