Determination of Fatigue Damage Initiation in Short Fiber-Reinforced Thermoplastic through Acoustic Emission Analysis
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Preloading with Different Maximum Stresses
3.2. Preloading with Different Number of Cycles
- Stage 1: N < 103;
- Stage 2: 103 ≤ N < 105
- Stage 3: N ≥ 105.
3.3. Correlation with S-N Data
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mortazavian, S.; Fatemi, A. Effects of fiber orientation and anisotropy on tensile strength and elastic modulus of short fiber reinforced polymer composites. Compos. Part B Eng. 2015, 72, 116–129. [Google Scholar] [CrossRef]
- Wilmes, A.; Hornberger, K. Influence of Fiber Orientation and Multiaxiality on the Fatigue Strength of Unnotched Specimens—Lifetime Estimation. Procedia Eng. 2015, 133, 148–160. [Google Scholar] [CrossRef] [Green Version]
- Doghri, I.; Tinel, L. Micromechanical modeling and computation of elasto-plastic materials reinforced with distributed-orientation fibers. Int. J. Plast. 2005, 21, 1919–1940. [Google Scholar] [CrossRef]
- Launay, A.; Marco, Y.; Maitournam, M.H.; Raoul, I. Constitutive behavior of injection molded short glass fiber reinforced thermoplastics: A phenomenological approach. Procedia Eng. 2011, 10, 2003–2008. [Google Scholar] [CrossRef] [Green Version]
- Kammoun, S.; Doghri, I.; Brassart, L.; Delannay, L. Micromechanical modeling of the progressive failure in short glass–fiber reinforced thermoplastics—First Pseudo-Grain Damage model. Compos. Part A Appl. Sci. Manuf. 2015, 73, 166–175. [Google Scholar] [CrossRef]
- de Monte, M.; Moosbrugger, E.; Quaresimin, M. Influence of temperature and thickness on the off-axis behaviour of short glass fibre reinforced polyamide 6.6—Quasi-static loading. Compos. Part A Appl. Sci. Manuf. 2010, 41, 859–871. [Google Scholar] [CrossRef]
- Bernasconi, A.; Cosmi, F.; Taylor, D. Analysis of the fatigue properties of different specimens of a 10% by weight short glass fibre reinforced polyamide 6.6. Polym. Test. 2014, 40, 149–155. [Google Scholar] [CrossRef]
- Fatemi, A.; Mortazavian, S.; Khosrovaneh, A. Fatigue Behavior and Predictive Modeling of Short Fiber Thermoplastic Composites. Procedia Eng. 2015, 133, 5–20. [Google Scholar] [CrossRef] [Green Version]
- Brunbauer, J.; Mösenbacher, A.; Guster, C.; Pinter, G. Fundamental influences on quasistatic and cyclic material behavior of short glass fiber reinforced polyamide illustrated on microscopic scale. J. Appl. Polym. Sci. 2014, 131, 40842. [Google Scholar] [CrossRef]
- Launay, A.; Marco, Y.; Maitournam, M.H.; Raoult, I. Modelling the influence of temperature and relative humidity on the time-dependent mechanical behaviour of a short glass fibre reinforced polyamide. Mech. Mater. 2013, 56, 1–10. [Google Scholar] [CrossRef] [Green Version]
- ISO. ISO 13003: Fibre-Reinforced Plastics—Determination of Fatigue Properties under Cyclic Loading Conditions; ISO: Geneva, Switzerland, 2019. [Google Scholar]
- Giordano, M.; Calabro, A.; Esposito, C.; D’Amore, A.; Nicolais, L. An acoustic-emission characterization of the failure modes in polymer-composite materials. Compos. Sci. Technol. 1998, 58, 1923–1928. [Google Scholar] [CrossRef]
- Bohse, J. Acoustic emission characteristics of micro-failure processes in polymer blends and composites. Compos. Sci. Technol. 2000, 60, 1213–1226. [Google Scholar] [CrossRef]
- Huguet, S.; Godin, N.; Gaertner, R.; Salmon, L.; Villard, D. Use of acoustic emission to identify damage modes in glass fibre reinforced polyester. Compos. Sci. Technol. 2002, 62, 1433–1444. [Google Scholar] [CrossRef]
- Karahan, M.; Lomov, S.V.; Bogdanovich, A.E.; Verpoest, I. Fatigue tensile behavior of carbon/epoxy composite reinforced with non-crimp 3D orthogonal woven fabric. Compos. Sci. Technol. 2011, 71, 1961–1972. [Google Scholar] [CrossRef]
- Kempf, M.; Skrabala, O.; Altstädt, V. Acoustic emission analysis for characterisation of damage mechanisms in fibre reinforced thermosetting polyurethane and epoxy. Compos. Part B Eng. 2014, 56, 477–483. [Google Scholar] [CrossRef]
- Carvelli, V.; D’Ettorre, A.; Lomov, S.V. Acoustic emission and damage mode correlation in textile reinforced PPS composites. Compos. Struct. 2017, 163, 399–409. [Google Scholar] [CrossRef]
- Kelkel, B.; Argus, P.; Gurka, M. Scalable Monitoring System for the Localization of Damaging Events in Thin-Walled CFRP Structures Based on Acoustic Emission Analysis and Neural Networks. Key Eng. Mater. 2019, 809, 401–406. [Google Scholar] [CrossRef]
- Sause, M.G.R. In Situ Monitoring of Fiber-Reinforced Composites: Theory, Basic Concepts, Methods, and Applications; Springer: Cham, Switzerland, 2016; ISBN 978-3-319-30953-8. [Google Scholar]
- Sato, N.; Kurauchi, T.; Sato, S.; Kamigaito, O. Mechanism of fracture of short glass fibre-reinforced polyamide thermoplastic. J. Mater. Sci. 1984, 19, 1145–1152. [Google Scholar] [CrossRef]
- Schoßig, M.; Zankel, A.; Bierögel, C.; Pölt, P.; Grellmann, W. ESEM investigations for assessment of damage kinetics of short glass fibre reinforced thermoplastics—Results of in situ tensile tests coupled with acoustic emission analysis. Compos. Sci. Technol. 2011, 71, 257–265. [Google Scholar] [CrossRef]
- Benz, J.; Willems, F.; Bonten, C. The Sound of Materials. Kunstst. Int. 2016, 11, 46–49. [Google Scholar]
- Bauer, C.; Rief, T.; Hausmann, J.; Schalk, T. A Comparative Study of the Static and Cyclic Acoustic Emission Behavior of Fiber Reinforced Thermoplastics. In Proceedings of the 17th European Conference on Composite Materials (ECCM17), München, Germany, 26–30 June 2016. [Google Scholar]
- Jüngert, A.; Dugan, S.; Udoh, A. Acoustic Emission Testing under Difficult Conditions. In Proceedings of the 32nd European Conference on Acoustic Emission Testing, Prague, Czech Republic, 7–9 September 2016. [Google Scholar]
- Williams, R.S.; Reifsnider, K.L. Investigation of acoustic emission during fatigue loading of composite specimens. J. Compos. Mater. 1974, 8, 340–355. [Google Scholar] [CrossRef]
- Schorer, N.; Sause, M. Characterization of CFRP Laminates under Tension-Tension Fatigue Using 3D Digital Image Correlation; Universität Augsburg: Augsburg, Germany, 2018. [Google Scholar]
- Bauer, C. Charakterisierung und Numerische Beschreibung des Nichtlinearen Werkstoff-und Lebensdauerverhaltens eines Kurzglasfaserverstärkten Polymerwerkstoffes unter Berücksichtigung der im µCT gemessenen Lokalen Faserorientierung. PhD Thesis, TU Kaiserslautern, Kaiserslautern, Germany, 2017. [Google Scholar]
- DIN Deutsches Institut für Normung e.V. DIN EN ISO 527-1: Kunststoffe-Bestimmung der Zugeigenschaften-Teil 1: Allgemeine Grundsätze; DIN: Berlin, Germany, 2019. [Google Scholar]
- Akaike, H. Markovian representation of stochastic processes and its application to the analysis of autoregressive moving average processes. In Selected Papers of Hirotugu Akaike; Springer: Berlin, Germany, 1998; pp. 223–247. [Google Scholar]
Maximum Stress in MPa | Relative Maximum Stress | Number of Cycles | |||||
---|---|---|---|---|---|---|---|
102 | 103 | 104 | 105 | 106 | 107 | ||
79.8 | 0.53 | x | |||||
73.2 | 0.48 | x | |||||
66.5 | 0.44 | x | |||||
59.9 | 0.40 | x | x | x | x | x | x |
53.2 | 0.35 | x | |||||
46.6 | 0.31 | x | |||||
39.9 | 0.26 | x | |||||
33.3 | 0.22 | x | |||||
26.6 | 0.18 | x | |||||
20.0 | 0.13 | x |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krummenacker, J.; Hausmann, J. Determination of Fatigue Damage Initiation in Short Fiber-Reinforced Thermoplastic through Acoustic Emission Analysis. J. Compos. Sci. 2021, 5, 221. https://doi.org/10.3390/jcs5080221
Krummenacker J, Hausmann J. Determination of Fatigue Damage Initiation in Short Fiber-Reinforced Thermoplastic through Acoustic Emission Analysis. Journal of Composites Science. 2021; 5(8):221. https://doi.org/10.3390/jcs5080221
Chicago/Turabian StyleKrummenacker, Janna, and Joachim Hausmann. 2021. "Determination of Fatigue Damage Initiation in Short Fiber-Reinforced Thermoplastic through Acoustic Emission Analysis" Journal of Composites Science 5, no. 8: 221. https://doi.org/10.3390/jcs5080221
APA StyleKrummenacker, J., & Hausmann, J. (2021). Determination of Fatigue Damage Initiation in Short Fiber-Reinforced Thermoplastic through Acoustic Emission Analysis. Journal of Composites Science, 5(8), 221. https://doi.org/10.3390/jcs5080221