Milling of an Aluminium Matrix Composite Using MCD-Tipped Tools with Adjusted Corner and Minor Cutting Edge Geometries
Abstract
:1. Introduction
1.1. Technical Impact, Economical Relevance, and Sustainability of AMCs
1.2. Applicable Cutting Materials for Finishing of AMCs
1.3. Turning and Milling of AMCs with Diamond Cutting Materials
1.4. Inferences
2. Materials and Methods
2.1. Composite Material Characterisation
2.2. Cutting Material and Tool Geometry
2.3. Cutting Conditions and Experimental Setup
2.4. Surface Evaluation
3. Results and Discussion
3.1. Surface Structure
3.2. Residual Stress State
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Width of cut | |
Depth of cut | |
Fracture elongation | |
AMC | Aluminium matrix composite |
CBN | Cubic boron nitride |
CVD | Chemical vapour deposition |
CVD-D | Chemical vapour deposited diamond |
Average particle diameter for particle proportion | |
E | Young’s modulus |
Young’s modulus for X-ray diffraction analysis | |
ECM | Electro chemical machining |
Feed per tooth | |
HSS | High speed steel |
Vickers hardness | |
MCD | Mono crystalline diamond |
MMC | Metal matrix composite |
Rotational speed of milling spindle | |
ND | Natural diamond |
PCD | Poly crystalline diamond |
Ultimate tensile strength | |
Yield strength | |
Five-peaks arithmetic mean height | |
Average five-peaks arithmetic mean height | |
Five-pits arithmetic mean height | |
Average five-pits arithmetic mean height | |
SEM | Scanning electron microscopy |
Cutting speed | |
Valley void volume | |
Clearance angle of the minor cutting edge | |
Wedge angle of the minor cutting edge | |
Rake angle of minor cutting edge | |
Tool cutting edge angle of the minor cutting edge | |
Cut-off wavelength | |
Denoising wavelength | |
Poisson’s ratio for X-ray diffraction analysis | |
Standard deviation of five-peaks or five-pits parameters | |
Standard deviation of valley void volume | |
First principal residual stress | |
Initial first principal residual stress | |
Second principal residual stress | |
Initial second principal residual stress | |
Feed motion angle |
References
- Batraev, I.; Chaitanya, S.; Cheng, X.; Dudina, D.V.; Krishnaraj, V.; Kumar, R.; Li, Y.; Lu, W.; Manna, A.; Jordá, J.M.; et al. Metal Matrix Composites: Materials, Manufacturing and Engineering, 1st ed.; De Gruyter: Berlin, Germany, 2014. [Google Scholar]
- Akhil, R. A Study on Recent Trends in the Applications of Metal Matrix Composites. Int. J. Res. Appl. Sci. Eng. Technol. 2018, 6, 172–180. [Google Scholar]
- Schmidt, A.; Siebeck, S.; Götze, U.; Wagner, G.; Nestler, D. Particle-Reinforced Aluminum Matrix Composites (AMCs)—Selected Results of an Integrated Technology, User, and Market Analysis and Forecast. Metals 2018, 8, 143. [Google Scholar] [CrossRef] [Green Version]
- Shishkin, A.; Mironov, V.; Goljandin, D.; Lapkovsky, V. Recycling of Al-W-B composite material. Key Eng. Mater. 2012, 527, 143–147. [Google Scholar] [CrossRef]
- Guo, Z.; Li, Q.; Shu, G. Evolution of microstructure and mechanical properties of the Al-B4C composite after recycling. IOP Conf. Ser. Mater. Sci. Eng. 2018, 409, 1–8. [Google Scholar] [CrossRef]
- Hung, N.P.; Boey, F.Y.; Khor, K.A.; Oh, C.A.; Lee, H.F. Machinability of cast and powder-formed aluminum alloys reinforced with SiC particles. J. Mater. Process. Technol. 1995, 48, 291–297. [Google Scholar] [CrossRef]
- Yanming, Q.; Zehua, Z. Tool wear and its mechanism for cutting SiC particle-reinforced aluminium matrix composites. J. Mater. Process. Technol. 2000, 100, 194–199. [Google Scholar] [CrossRef]
- Ding, X.; Liew, W.Y.H.; Liu, X.D. Evaluation of machining performance of MMC with PCBN and PCD tools. Wear 2005, 259, 1225–1234. [Google Scholar] [CrossRef]
- Bushlya, V.; Lenrick, F.; Gutnichenko, O.; Petrusha, I.; Osipov, O.; Kristiansson, S.; Stahl, J.E. Performance and wear mechanisms of novel superhard diamond and boron nitride based tools in machining Al-SiCp metal matrix composite. Wear 2017, 376–377, 152–164. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Xie, L.; Wang, X.; Ding, Z. PCD tool performance in high-speed milling of high volume fraction SiCp/Al composites. Int. J. Adv. Manuf. Technol. 2015, 78, 1445–1453. [Google Scholar] [CrossRef]
- Collins, J.L.; Cook, M.W. Machining MMCs with Diamond Tools. In Proceedings of the Tribology 2000—Plus, 12th International Colloquium, Ostfildern, Germany, 11–13 January 2000; Volume 3, pp. 1837–1853. [Google Scholar]
- Cooper, J.O. Machining of metal matrix composites using PCD, natural diamond, single crystal CVD and polycrystalline CVD diamond. Ind. Diam. Rev. 2007, 67, 34–38. [Google Scholar]
- Bushan, R.K.; Kumar, S.; Das, S. Effect of machining parameters on surface roughness and tool wear of 7075 Al alloy SiC composite. Int. J. Adv. Manuf. Technol. 2010, 50, 459–469. [Google Scholar] [CrossRef]
- Ge, Y.; Xu, J.; Fu, Y. Experimental study on high-speed milling of SiCp/Al composites. Adv. Mater. Res. 2011, 291–294, 725–731. [Google Scholar] [CrossRef]
- Wang, T.; Xie, L.J.; Wang, X.B.; Jiao, L.; Shen, J.W.; Xu, H.; Nie, F.M. Surface Integrity of High Speed Milling of Al/SiC/65p Aluminum Matrix Composites. Procedia CIRP 2013, 8, 475–480. [Google Scholar] [CrossRef] [Green Version]
- Dong, G.J.; Zhang, Y.J.; Zhou, M.; Wang, Y.J. The research of effect of cutting parameters on machined surface defects in high-speed milling of SiCp/Al composites. Key Eng. Mater. 2013, 589–590, 245–251. [Google Scholar] [CrossRef]
- Schubert, A.; Nestler, A.; Schmidt, T.; Schneider, J. Finishing of Aluminium Based LightWeight Materials. Sustainable production for ressource effeciency and ecomobility. In Proceedings of the International Chemnitz Manufacturing Colloquium, Chemnitz, Germany, 29–30 September 2010; Neugebauer, R., Ed.; pp. 447–464. [Google Scholar]
- Schubert, A.; Nestler, A. Enhancement of surface integrity in turning of particle reinforced aluminium matrix composites by tool design. Procedia Eng. 2011, 19, 300–305. [Google Scholar] [CrossRef] [Green Version]
- Clauß, B.; Nestler, A.; Schubert, A. Investigation of Surface Properties in Milling of SiC Particle Reinforced Aluminium Matrix Composites (AMCs). Procedia CIRP 2016, 46, 480–483. [Google Scholar] [CrossRef] [Green Version]
- Ge, Y.F.; Xu, J.H.; Yang, H.; Luo, S.B.; Fu, Y.C. Workpiece surface quality when ultra-precision turning of SiCp/Al composites. J. Mater. Process. Technol. 2008, 203, 166–175. [Google Scholar] [CrossRef]
- Bian, R.; He, N.; Li, L.; Zhan, Z.B.; Wu, Q.; Shi, Z.Y. Precision milling of high volume fraction SiCp/Al composites with monocrystalline diamond end mill. Int. J. Adv. Manuf. Technol. 2013, 71, 411–419. [Google Scholar] [CrossRef]
- Clauß, B.; Nestler, A.; Schubert, A.; Dietrich, D.; Lampke, T. Investigation of surface properties in turn milling of particle-reinforced aluminium matrix composites using MCD-tipped tools. Int. J. Adv. Manuf. Technol. 2019, 105, 937–950. [Google Scholar] [CrossRef] [Green Version]
- Clauß, B.; Nestler, A.; Schubert, A.; Dietrich, D.; Lampke, T. Influencing the Properties of the Generated Surface by Adjusted Rake and Clearance Angles in Side Milling of Aluminium Matrix Composites with MCD-Tipped Tools. J. Manuf. Mater. Process. 2019, 3, 59. [Google Scholar]
- Clauß, B.; Nestler, A.; Mehner, T.; Schubert, A.; Lampke, T. Influence of SiC particle volume fraction and texture on the surface properties in milling of AMCs with MCD-tipped tools. Procedia CIRP 2019, 85, 90–95. [Google Scholar] [CrossRef]
- Siebeck, S. Powder Metallurgical Synthesis of Aluminum Matrix Composites by Means Ofhigh Energy Milling. Ph.D. Thesis, Chemnitz University of Technology, Chemnitz, Germany, 2018. [Google Scholar]
- Hockauf, M.; Wagner, M.F.; Händel, M.; Lampke, T.; Siebeck, S.; Wielage, B. High-strenght aluminium-based light-weight materials for safety components—Recent progress by microstructural refinement and particle reinforcement. Int. J. Mater. Res. 2012, 103, 3–11. [Google Scholar] [CrossRef]
- DIN EN ISO 25178-3. Geometrical Product Specifications (GPS)—Surface Texture: Areal—Part 3: Specification Operators (ISO 25178-3:2012); Deutsches Institut für Normung e. V.: Berlin, Germany, 2012. [Google Scholar]
- Basheer, A.C.; Dabade, U.A.; Joshi, S.S.; Bhanuprasad, V.V.; Gadre, V.M. Modeling of surface roughness in precision machining of metal matrix composites using ANN. J. Mater. Process. Technol. 2008, 197, 439–444. [Google Scholar] [CrossRef]
- Nestler, A. Erzeugung Definierter Oberflächeneigenschaften bei der Drehbearbeitung von Partikelverstärkten Aluminiummatrix-Verbundwerkstoffen. Ph.D. Thesis, Chemnitz University of Technology, Chemnitz, Germany, 2013. [Google Scholar]
- Sivasankaran, S.; Harisagar, P.T.; Saminathan, E.; Siddharth, S.; Sasikumar, P. Effect of nose radius and graphite addition on turning of AA 7075-ZrB2 in-situ composites. Procedia Eng. 2014, 97, 582–589. [Google Scholar] [CrossRef] [Green Version]
- Lin, K.; Wang, W.; Jiang, R.; Xiong, Y. Effect of tool nose radius and tool wear on residual stresses distrinbution white turning in situ TiB2/7050 Al metal matrix composites. Int. J. Adv. Manuf. Technol. 2019, 100, 143–151. [Google Scholar] [CrossRef]
- Schubert, A.; Nestler, A.; Mehner, T. Influencing the residual stresses in the surface layer by use of appropriate cutting parameters and tool geometries in turning of aluminium matrix composites. Mater. Werkst. 2012, 43, 648–655. [Google Scholar] [CrossRef]
Mechanical Parameters | EN AW-2017 T4 | 90 vol.% EN AW-2017 T4 + 10 vol.% SiCp |
---|---|---|
Yield strength | 348 MPa | 467 MPa |
Ultimate tensile strength | 502 MPa | 610 MPa |
Young’s modulus E | 71 GPa | 90 GPa |
Fracture elongation | ||
Vickers hardness | ||
Initial first principal residual stress | ||
Initial second principal residual stress |
(m/min) | (mm) | (mm) | (mm) | Corner Geometry | |||
---|---|---|---|---|---|---|---|
250 | 0.015 | 0.25 | 0.5 | ||||
R0.05-00.05 | |||||||
− | R0.05-R50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clauß, B.; Schubert, A. Milling of an Aluminium Matrix Composite Using MCD-Tipped Tools with Adjusted Corner and Minor Cutting Edge Geometries. J. Compos. Sci. 2021, 5, 235. https://doi.org/10.3390/jcs5090235
Clauß B, Schubert A. Milling of an Aluminium Matrix Composite Using MCD-Tipped Tools with Adjusted Corner and Minor Cutting Edge Geometries. Journal of Composites Science. 2021; 5(9):235. https://doi.org/10.3390/jcs5090235
Chicago/Turabian StyleClauß, Benjamin, and Andreas Schubert. 2021. "Milling of an Aluminium Matrix Composite Using MCD-Tipped Tools with Adjusted Corner and Minor Cutting Edge Geometries" Journal of Composites Science 5, no. 9: 235. https://doi.org/10.3390/jcs5090235
APA StyleClauß, B., & Schubert, A. (2021). Milling of an Aluminium Matrix Composite Using MCD-Tipped Tools with Adjusted Corner and Minor Cutting Edge Geometries. Journal of Composites Science, 5(9), 235. https://doi.org/10.3390/jcs5090235