A SiO2/pHEMA-Based Polymer-Infiltrated Ceramic Network Composite for Dental Restorative Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the SiO2/pHEMA-Based Composite
2.3. Structural Characterization
2.4. SEM Observation
2.5. Mechanical Properties
2.6. Surface Characterization
2.7. Shear Bond Strength
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wilmers, J.; Bargmann, S. Nature’s design solutions in dental enamel: Uniting high strength and extreme damage resistance. Acta Biomater. 2020, 107, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Coldea, A.; Swain, M.; Thiel, N. Mechanical properties of polymer-infiltrated-ceramic-network materials. Dent. Mater. 2013, 29, 419–426. [Google Scholar] [CrossRef]
- Mainjot, A.; Dupont, N.; Oudkerk, J.; Dewael, T.; Sadoun, M. From Artisanal to CAD-CAM Blocks: State of the Art of Indirect Composites. J. Dent. Res. 2016, 95, 487–495. [Google Scholar] [CrossRef]
- He, L.-H.; Swain, M. A novel polymer infiltrated ceramic dental material. Dent. Mater. 2011, 27, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Kang, L.; Zhou, Y.; Lan, J.; Yu, Y.; Cai, Q.; Yang, X. Effect of resin composition on performance of polymer-infiltrated feldspar-network composites for dental restoration. Dent. Mater. J. 2020, 39, 900–908. [Google Scholar] [CrossRef] [PubMed]
- Goujat, A.; Abouelleil, H.; Colon, P.; Jeannin, C.; Pradelle, N.; Seux, D.; Grosgogeat, B. Mechanical properties and internal fit of 4 CAD-CAM block materials. J. Prosthet. Dent. 2018, 119, 384–389. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; He, Y.; Ruan, W.; Ling, Z.; Zheng, C.; Gai, Y.; Yan, W. Biomechanical behavior of endocrown restorations with different CAD-CAM materials: A 3D finite element and in vitro analysis. J. Prosthet. Dent. 2021, 125, 890–899. [Google Scholar] [CrossRef]
- Ikeda, H.; Nagamatsu, Y.; Shimizu, H. Preparation of silica–poly(methyl methacrylate) composite with a nanoscale dual-network structure and hardness comparable to human enamel. Dent. Mater. 2019, 35, 893–899. [Google Scholar] [CrossRef]
- Kawajiri, Y.; Ikeda, H.; Nagamatsu, Y.; Masaki, C.; Hosokawa, R.; Shimizu, H. PICN Nanocomposite as Dental CAD/CAM Block Comparable to Human Tooth in Terms of Hardness and Flexural Modulus. Materials 2021, 14, 1182. [Google Scholar] [CrossRef] [PubMed]
- Sodeyama, M.; Ikeda, H.; Nagamatsu, Y.; Masaki, C.; Hosokawa, R.; Shimizu, H. Printable PICN Composite Mechanically Compatible with Human Teeth. J. Dent. Res. 2021, 100, 1475–1481. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, J.; Ruse, N.D.; Phan, A.; Sadoun, M. High-temperature-pressure Polymerized Resin-infiltrated Ceramic Networks. J. Dent. Res. 2014, 93, 62–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, B.; Li, J.; Wang, H.; Lin, Y.; Shen, Y.; Li, M.; Deng, X.; Nan, C. Mechanical properties of polymer-infiltrated-ceramic (sodium aluminum silicate) composites for dental restoration. J. Dent. 2017, 62, 91–97. [Google Scholar] [CrossRef]
- Li, S.; Zhao, Y.; Zhang, J.-F.; Xie, C.; Zhao, X. Machinability of poly(methyl methacrylate) infiltrated zirconia hybrid composites. Mater. Lett. 2014, 131, 347–349. [Google Scholar] [CrossRef]
- Li, J.; Cui, B.-C.; Lin, Y.-H.; Deng, X.-L.; Li, M.; Nan, C.-W. High strength and toughness in chromatic polymer-infiltrated zirconia ceramics. Dent. Mater. 2016, 32, 1555–1563. [Google Scholar] [CrossRef] [PubMed]
- Luensmann, D.; Jones, L. Albumin adsorption to contact lens materials: A review. Contact Lens Anterior Eye 2008, 31, 179–187. [Google Scholar] [CrossRef]
- Kirschning, A.; Dibbert, N.; Dräger, G. Chemical Functionalization of Polysaccharides-Towards Biocompatible Hydrogels for Biomedical Applications. Chem. Eur. J. 2018, 24, 1231–1240. [Google Scholar] [CrossRef]
- Liu, Y.-Y.; Liu, T.-Y.; Chen, S.-Y.; Liu, D.-M. Synthesis and characterization of nanoporous SiO2/pHEMA biocomposites. J. Mater. Sci. Mater. Electron. 2008, 19, 2903–2911. [Google Scholar] [CrossRef] [Green Version]
- Luciani, G.; Costantini, A.; Silvestri, B.; Tescione, F.; Branda, F.; Pezzella, A. Synthesis, structure and bioactivity of pHEMA/SiO2 hybrids derived through in situ sol–gel process. J. Sol-Gel Sci. Technol. 2008, 46, 166–175. [Google Scholar] [CrossRef] [Green Version]
- Silvestri, B.; Luciani, G.; Costantini, A.; Tescione, F.; Branda, F.; Pezzella, A. In-situ sol-gel synthesis and characterization of bioactive pHEMA/SiO 2 blend hybrids. J. Biomed. Mater. Res. Part B Appl. Biomater. 2009, 89B, 369–378. [Google Scholar] [CrossRef]
- Moszner, N.; Hirt, T. New polymer-chemical developments in clinical dental polymer materials: Enamel-dentin adhesives and restorative composites. J. Polym. Sci. Part A Polym. Chem. 2012, 50, 4369–4402. [Google Scholar] [CrossRef]
- Sidhu, S.K.; Nicholson, J.W. A Review of Glass-Ionomer Cements for Clinical Dentistry. J. Funct. Biomater. 2016, 7, 16. [Google Scholar] [CrossRef] [PubMed]
- ISO 6872:2015; Dentistry–Ceramic Materials; International Organization for Standarization: Geneva, Switzerland, 2015.
- Yano, H.T.; Ikeda, H.; Nagamatsu, Y.; Masaki, C.; Hosokawa, R.; Shimizu, H. Correlation between microstructure of CAD/CAM composites and the silanization effect on adhesive bonding. J. Mech. Behav. Biomed. Mater. 2020, 101, 103441. [Google Scholar] [CrossRef] [PubMed]
- Owens, D.K.; Wendt, D.T. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747. [Google Scholar] [CrossRef]
- Uchino, T.; Aboshi, A.; Kohara, S.; Ohishi, Y.; Sakashita, M.; Aoki, K. Microscopic structure of nanometer-sized silica particles. Phys. Rev. B 2004, 69, 155409. [Google Scholar] [CrossRef] [Green Version]
- Yamada, T.; Nakajima, M.; Suemoto, T.; Uchino, T. Formation and Photoluminescence Characterization of Transparent Silica Glass Prepared by Solid-Phase Reaction of Nanometer-Sized Silica Particles. J. Phys. Chem. C 2007, 111, 12973–12979. [Google Scholar] [CrossRef]
- Abay, I.; Denizli, A.; Bişkin, E.; Salih, B. Removal and pre-concentration of phenolic species onto β-cyclodextrin modified poly(hydroxyethylmethacrylate–ethyleneglycoldimethacrylate) microbeads. Chemosphere 2005, 61, 1263–1272. [Google Scholar] [CrossRef]
- Suhag, G.S.; Bhatnagar, A.; Singh, H. Poly(hydroxyethyl methacrylate)-based co-polymeric hydrogels for transdermal delivery of salbutamol sulphate. J. Biomater. Sci. Polym. Ed. 2008, 19, 1189–1200. [Google Scholar] [CrossRef] [PubMed]
- Arola, D.D.; Reprogel, R.K. Tubule orientation and the fatigue strength of human dentin. Biomaterials 2006, 27, 2131–2140. [Google Scholar] [CrossRef]
- Zhang, Y.-R.; Du, W.; Zhou, X.-D.; Yu, H.-Y. Review of research on the mechanical properties of the human tooth. Int. J. Oral Sci. 2014, 6, 61–69. [Google Scholar] [CrossRef] [Green Version]
- ISO 10477:2018; Dentistry—Polymer-Based Crown and Veneering Materials; International Organization for Standarization: Geneva, Switzerland, 2018.
- Bello, Y.D.; Di Domenico, M.; Magro, L.D.; Lise, M.W.; Corazza, P.H. Bond strength between composite repair and polymer-infiltrated ceramic-network material: Effect of different surface treatments. J. Esthet. Restor. Dent. 2018, 31, 275–279. [Google Scholar] [CrossRef]
- Şişmanoğlu, S.; Gürcan, A.T.; Yıldırım-Bilmez, Z.; Turunç-Oğuzman, R.; Gümüştaş, B. Effect of surface treatments and universal adhesive application on the microshear bond strength of CAD/CAM materials. J. Adv. Prosthodont. 2020, 12, 22–32. [Google Scholar] [CrossRef] [Green Version]
- Ji, X.-L.; Jiang, S.-C.; Qiu, X.-P.; Dong, D.-W.; Yu, D.-H.; Jiang, B.-Z. Structure and properties of hybrid poly(2-hydroxyethyl methacry-late)/SiO2monoliths. J. Appl. Polym. Sci. 2003, 88, 3168–3175. [Google Scholar] [CrossRef]
- Costa, R.O.R.; Pereira, M.M.; Lameiras, F.S.; Vasconcelos, W.L. Apatite formation on poly(2-hydroxyethyl methacrylate)-silica hybrids prepared by sol-gel process. J. Mater. Sci. Mater. Electron. 2005, 16, 927–932. [Google Scholar] [CrossRef]
- Costantini, A.; Luciani, G.; Annunziata, G.; Silvestri, B.; Branda, F. Swelling properties and bioactivity of silica gel/pHEMA nanocomposites. J. Mater. Sci. Mater. Electron. 2006, 17, 319–325. [Google Scholar] [CrossRef]
- Costantini, A.; Luciani, G.; Silvestri, B.; Tescione, F.; Branda, F. Bioactive poly(2-hydroxyethylmethacrylate)/silica gel hybrid nanocomposites prepared by sol-gel process. J. Biomed. Mater. Res. Part B Appl. Biomater. 2008, 86B, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.-L.; Chin, W.-K.; Yang, W. Structural characteristics and properties of silica/poly(2-hydroxyethyl methacrylate) (PHEMA) nanocomposites prepared by mixing colloidal silica or tetraethyloxysilane (TEOS) with PHEMA. Polymer 2005, 46, 1865–1877. [Google Scholar] [CrossRef]
- Costa, R.O.; Lameiras, F.S.; Nunes, E.H.; Vasconcelos, D.C.; Vasconcelos, W. Preparation of silica-poly(2-hydroxyethyl methacrylate) hybrids modified with 3-methacryloxypropyltrimethoxysilane. Ceram. Int. 2016, 42, 3465–3472. [Google Scholar] [CrossRef]
- Schiraldi, C.; D’Agostino, A.; Oliva, A.; Flamma, F.; De Rosa, A.; Apicella, A.; Aversa, R.; De Rosa, M. Development of hybrid materials based on hydroxyethylmethacrylate as supports for improving cell adhesion and proliferation. Biomaterials 2004, 25, 3645–3653. [Google Scholar] [CrossRef]
- Li, S.; Shah, A.; Hsieh, A.J.; Haghighat, R.; Praveen, S.S.; Mukherjee, I.; Wei, E.; Zhang, Z.; Wei, Y. Characterization of poly(2-hydroxyethyl methacrylate-silica) hybrid materials with different silica contents. Polymer 2007, 48, 3982–3989. [Google Scholar] [CrossRef]
- Chang, C.-C.; Oyang, T.-Y.; Hwang, F.-H.; Chen, C.-C.; Cheng, L.-P. Preparation of polymer/silica hybrid hard coatings with enhanced hydrophobicity on plastic substrates. J. Non-Cryst. Solids 2012, 358, 72–76. [Google Scholar] [CrossRef]
- Soltani, N.; Bahrami, A.; Pech-Canul, M.; González, L. Review on the physicochemical treatments of rice husk for production of advanced materials. Chem. Eng. J. 2015, 264, 899–935. [Google Scholar] [CrossRef]
Acronym | Material Type | Regent Name (Product Name) | Purity (%) | Product Company |
---|---|---|---|---|
SiO2 | Ceramic | Silica nanoparticles (Aerosil® 300) | 99.8 | NIPPON AEROSIL CO., LTD., Tokyo, Japan |
PVA | Binder | Poly(vinyl alcohol) | 78–82 * | FUJIFILM Wako Pure Chemical Corp., Tokyo, Japan |
HEMA | Monomer | 2-hydroxyethyl methacrylate | 95.0 | FUJIFILM Wako Pure Chemical Corp., Osaka, Japan |
EGDMA | Cross-linker | Ethylene glycol dimethacrylate | 97 | Tokyo Chemical Industry Co., Ltd., Tokyo, Japan |
BPO | Initiator | Benzoyl peroxide | 97.0 | Alfa Aesar, Haverhill, MA, USA |
Flexural Strength, MPa | Flexural Modulus, GPa | Vickers Hardness |
---|---|---|
112.5 (18.7) | 13.6 (3.4) | 168.2 (16.1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ikeda, H.; Kawajiri, Y.; Sodeyama, M.K.; Yano, H.T.; Nagamatsu, Y.; Masaki, C.; Hosokawa, R.; Shimizu, H. A SiO2/pHEMA-Based Polymer-Infiltrated Ceramic Network Composite for Dental Restorative Materials. J. Compos. Sci. 2022, 6, 17. https://doi.org/10.3390/jcs6010017
Ikeda H, Kawajiri Y, Sodeyama MK, Yano HT, Nagamatsu Y, Masaki C, Hosokawa R, Shimizu H. A SiO2/pHEMA-Based Polymer-Infiltrated Ceramic Network Composite for Dental Restorative Materials. Journal of Composites Science. 2022; 6(1):17. https://doi.org/10.3390/jcs6010017
Chicago/Turabian StyleIkeda, Hiroshi, Yohei Kawajiri, Minako Kibune Sodeyama, Haruka Takesue Yano, Yuki Nagamatsu, Chihiro Masaki, Ryuji Hosokawa, and Hiroshi Shimizu. 2022. "A SiO2/pHEMA-Based Polymer-Infiltrated Ceramic Network Composite for Dental Restorative Materials" Journal of Composites Science 6, no. 1: 17. https://doi.org/10.3390/jcs6010017
APA StyleIkeda, H., Kawajiri, Y., Sodeyama, M. K., Yano, H. T., Nagamatsu, Y., Masaki, C., Hosokawa, R., & Shimizu, H. (2022). A SiO2/pHEMA-Based Polymer-Infiltrated Ceramic Network Composite for Dental Restorative Materials. Journal of Composites Science, 6(1), 17. https://doi.org/10.3390/jcs6010017