Fatigue Behavior of Smart Composites with Distributed Fiber Optic Sensors for Offshore Applications
Abstract
:1. Introduction
2. Experiments
2.1. Specimen Preparation and Instrumentation
2.2. Experimental Setup
3. Results
3.1. Quasi-Static Test
3.2. Load–Unload Tests
3.2.1. Microscopy Analysis for Damage Assessment
3.2.2. Comparison between Mechanically Recorded Strain and FOS Measurements
3.3. Low Number of Fatigue Cycles (LNFC) Tests
3.3.1. Comparison between Mechanically Recorded Strain and FOS Measurements
3.3.2. Load–Unload Test
3.3.3. Low Number Fatigue Cycles (LNCF) Tests
3.4. High Number Fatigue Cycles (HNFC) Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Drissi-Habti, M.; Raman, V.; Khadour, A.; Timorian, S. Fiber Optic Sensor Embedment Study for Multi-Parameter Strain Sensing. Sensors 2017, 17, 667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raman, V.; Drissi-Habti, M. Numerical simulation analysis as a tool to identify areas of weakness in a turbine wind-blade and solutions for their reinforcement. Compos. Part B Eng. 2016, 103, 23–39. [Google Scholar] [CrossRef] [Green Version]
- Raman, V.; Drissi-Habti, M.; Limje, P.; Khadour, A. Finer SHM-Coverage of Inter-Plies and Bondings in Smart Composite by Dual Sinusoidal Placed Distributed Optical Fiber Sensors. Sensors 2019, 19, 742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raman, V.; Drissi-Habti, M. Numerical simulation of a resistant structural bonding in wind-turbine blade through the use of composite cord stitching. Compos. Part B Eng. 2019, 176, 107094. [Google Scholar] [CrossRef]
- Drissi-Habti, M.; el Assami, Y.; Raman, V. Multiscale Toughening of Composites with Carbon Nanotubes—Continuous Multiscale Reinforcement New Concept. J. Compos. Sci. 2021, 5, 135. [Google Scholar] [CrossRef]
- Lim, D.-W. Development of Self-Powered Wireless Structural Health Monitoring (SHM) for Wind Turbine Blades. Ph.D. Thesis, University of Minnesota, Minneapolis, MN, USA, 2015. [Google Scholar]
- Holnicki-Szulc, J.; Rodellar, J. Smart Structures: Requirements and Potential Applications in Mechanical and Civil Engineering; Nato Science Partnership Subseries: 3; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Riccio, A.; DiCaprio, F.; Camerlingo, F.; Scaramuzzino, F.; Gambino, B. Positioning of embedded optical fibres sensors for the monitoring of buckling in sti ened composite panels. Appl. Compos. Mater. 2013, 20, 73–86. [Google Scholar] [CrossRef]
- Ansari, F. Structural health monitoring with fiber optic sensors. Front. Mech. Eng. China 2009, 4, 103–110. [Google Scholar] [CrossRef]
- Barrias, A.; Casas, J.R.; Villalba, S. A review of distributed optical fiber sensors for civil engineering applications. Sensors 2016, 16, 748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiber Optic Basics. Available online: https://www.newport.com/t/fiber-optic-basics (accessed on 12 October 2016).
- Dasgupta, A.; Sirkis, J.S. Importance of coatings to optical fiber sensors embedded in ’smart’ structures. AIAA J. 1992, 30, 1337–1343. [Google Scholar] [CrossRef]
- Barton, E.; Ogin, S.; Thorne, A.; Reed, G. Optimisation of the coating of a fibre optical sensor embedded in a cross-ply GFRP laminate. Compos. Part A Appl. Sci. Manuf. 2002, 33, 27–34. [Google Scholar] [CrossRef]
- Pradhan, H.S.; Sahu, P.K. A survey on the performances of distributed fiber-optic sensors. In Proceedings of the 2015 International Conference on Microwave, Optical and Communication Engineering (ICMOCE), Bhubaneswar, India, 18–20 December 2015; pp. 243–246. [Google Scholar]
- Alfredo, G.; Antonio, F.-L.; Lozano, A. Fiber Optic Distributed Sensing NATO STO, STO-EN-AVT-220. 2014. Available online: https://www.sto.nato.int/publications/STO%20Educational%20Notes/STO-EN-AVT-220/EN-AVT-220-04.pdf (accessed on 25 November 2021).
- Abhisek, U.; Hubert, B.; Peter, K. Distributed Temperature Sensing: Review of Technology and Applications. IEEE Sens. J. 2012, 12, 885–892. [Google Scholar] [CrossRef] [Green Version]
- OBR 4600 J Luna. Available online: http://lunainc.com/obr4600 (accessed on 7 March 2017).
- Grattan, K.; Sun, T. Fiber optic sensor technology: An overview. Sens. Actuators A Phys. 2000, 82, 40–61. [Google Scholar] [CrossRef]
- Drissi-Habti, M. EVEREST Project Report; Internal Technical Report; EVEREST: Nantes, France, March 2014. [Google Scholar]
- Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials–ASTM D790, Standard; ASTM International: West Conshohocken, PA, USA, 2002.
- Rajan, G. Optical Fiber Sensors: Advanced Techniques and Applications, Devices, Circuits, and Systems; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Drissi-Habti, M. Damage development and moduli reduction in a unidirectional SiC-MAS.L composite tested under uniaxial tensile loading. Scr. Metall. Mater. 1995, 33, 967–973. [Google Scholar] [CrossRef]
- Drissi-Habti, M. Mechanical Behavior of Large Size Compact Tension Specimens of 2D Woven SiC-SiC Composite Materials. In Fracture Mechanics of Ceramics; Bradt, R.C., Hasselman, D.P.H., Munz, D., Sakai, M., Shevchenko, V.Y., Eds.; Springer: Boston, MA, USA, 1996; Volume 12. [Google Scholar] [CrossRef]
- Drissi-Habti, M. Etude de L’endommagement en Traction Uniaxiale des Composites SiC-MAS.L. Sil. Ind. 1996, 61, 191–200. [Google Scholar]
- Drissi-Habti, M. Assessment of the mechanical behaviour of the SiC fibre reinforced magnesium lithium aluminosilicate glass-ceramic matrix composite tested under uniaxial tensile loading. J. Eur. Ceram. Soc. 1997, 17, 33–39. [Google Scholar] [CrossRef]
- Drissi-Habti, M.; Nakano, K. Microstructure and mechanical behavior of the Hi-Nicalon fiber reinforced–silicon nitride composite material. Compos. Sci. Technol. 1997, 57, 1483–1489. [Google Scholar] [CrossRef]
- Drissi-Habti, M.; Nakano, K. Local mechanical characterisation and interfacial behaviour in Hi-Nicalon/BN/-Si3N4 ceramic matrix composites. J. Eur. Ceram. Soc. 1998, 18, 1845–1855. [Google Scholar] [CrossRef]
- O’Brian, T. Long-term Behavior of Composites. In ASTM Special Technical Publication; ASTM: West Conshehoken, PA, USA, 1983. [Google Scholar]
- Creed, R.F., Jr. High Cycle Tensile Fatigue of Unidirectional Fiber Glass Composite Tested at High Frequency. Master’s Thesis, Montana State University, Bozeman, MT, USA, 1993. [Google Scholar]
- Wen, J.; Xia, Z.; Choy, F. Damage detection of carbon fiber reinforced polymer composites via electrical resistance measurement. Compos. Part B Eng. 2011, 42, 77–86. [Google Scholar] [CrossRef]
- Corten, H. Composite Materials: Testing and Design (Second Conference). In Proceedings of the ASTM International: Selected Technical Papers, Anaheim, CA, USA, 20–22 April 1971; ASTM International: West Conshehoken, PA, USA, 1972. [Google Scholar]
- Jang, T.S.; Lee, J.J.; Lee, D.C.; Huh, J.-S. The mechanical behavior of optical fiber sensor embedded within the composite laminate. J. Mater. Sci. 1999, 34, 5853–5860. [Google Scholar] [CrossRef]
- Boyer, H.; Metals, A. Atlas of Fatigue Curves; American Society for Metals: Almelle, The Netherlands, 1985. [Google Scholar]
- Ashcroft, A. Fatigue load conditions. In Handbook of Adhesion Technology; da Silva, L.F.M., Fichsner, A., Adams, R.D., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 84–874. [Google Scholar] [CrossRef]
Materials | Density (kg/m3) | Modulus (MPa) | Poisson’s Ratio |
---|---|---|---|
Composite (CFRP) | 1950 | E1 = 103,000 | 0.05 |
E2 = 10,400 | |||
G12 = 54,000 | |||
FOS Acrylate coating | 950 | 2700 | 0.35 |
Silica Glass | 2400 | 72,000 | 0.17 |
Properties | UD with Sensor | 45 with Sensor |
---|---|---|
Flexural modulus | 109 GPa | 17.4 GPa |
Maximum stress | 1557 MPa | 259.5 MPa |
Proportional limit | (0.80 GPa, 0.0069) | (0.08 GPa, 0.0050) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drissi-Habti, M.; Raman, V. Fatigue Behavior of Smart Composites with Distributed Fiber Optic Sensors for Offshore Applications. J. Compos. Sci. 2022, 6, 2. https://doi.org/10.3390/jcs6010002
Drissi-Habti M, Raman V. Fatigue Behavior of Smart Composites with Distributed Fiber Optic Sensors for Offshore Applications. Journal of Composites Science. 2022; 6(1):2. https://doi.org/10.3390/jcs6010002
Chicago/Turabian StyleDrissi-Habti, Monssef, and Venkadesh Raman. 2022. "Fatigue Behavior of Smart Composites with Distributed Fiber Optic Sensors for Offshore Applications" Journal of Composites Science 6, no. 1: 2. https://doi.org/10.3390/jcs6010002
APA StyleDrissi-Habti, M., & Raman, V. (2022). Fatigue Behavior of Smart Composites with Distributed Fiber Optic Sensors for Offshore Applications. Journal of Composites Science, 6(1), 2. https://doi.org/10.3390/jcs6010002