Surface Damage in Woven Carbon Composite Panels under Orthogonal and Inclined High-Velocity Impacts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Impact Testing
2.2. Samples’ Analysis
3. Results and Discussion
3.1. Orthogonal Impact
3.1.1. Effect of the Shape of the Projectile
3.1.2. Effect of the Layer of Kevlar for Reinforcement
3.2. Inclined Impact
3.2.1. Effect of the Shape of the Projectile
3.2.2. Effect of the Layer of Kevlar for Reinforcement
3.3. Effect of Impact Energy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ursenbach, D.O. Penetration of CFRP Laminates by Cylindrical Indenters. Master’s Thesis, The University of British Columbia, Vancouver, BC, Canada, October 1995. [Google Scholar]
- Bhatnagar, A. Lightweight Ballistic Composites; Woodhead Publishing: Sawston, UK, 2006. [Google Scholar] [CrossRef]
- Cantwell, W.J.; Morton, J. Comparison of the low and high velocity impact response of CFRP. Composites 1989, 20, 545–551. [Google Scholar] [CrossRef]
- Vaidya, U.K. Impact response of laminated and sandwich composites. In Impact Engineering of Composite Structures; Abrate, S., Ed.; Springer: Vienna, Austria, 2011; pp. 97–191. [Google Scholar] [CrossRef]
- Mitrevski, T.; Marshall, I.H.; Thomson, R. The influence of impactor shape on the damage to composite laminates. Compos. Struct. 2006, 76, 116–122. [Google Scholar] [CrossRef]
- Cantwell, W.J.; Morton, J. Impact perforation of carbon fibre reinforced plastic. Compos. Sci. Technol. 1990, 38, 119–141. [Google Scholar] [CrossRef]
- Shahkarami, A.; Cepus, E.; Vaziri, R.; Poursartip, A. Material responses to ballistic impact. Lightweight Ballist. Compos. Mil. Law-Enforc. Appl. 1995, 2, 72–100. [Google Scholar] [CrossRef]
- Andrew, J.J.; Srinivasan, S.M.; Arockiarajan, A.; Dhakal, H.N. Parameters influencing the impact response of fiber-reinforced polymer matrix composite materials: A critical review. Compos. Struct. 2019, 224, 111007. [Google Scholar] [CrossRef]
- Børvik, T.; Langseth, M.; Hopperstad, O.S.; Malo, K.A. Perforation of 12 mm thick steel plates by 20 mm diameter projectiles with flat, hemispherical and conical noses: Part I: Experimental study. Int. J. Impact Eng. 2002, 27, 19–35. [Google Scholar] [CrossRef]
- Hoskin, B.C.; Baker, A.A. Lectures on Composite Materials for Aircraft Structures; Aeronautical Research Labs: Melbourne, Australia, 1982. [Google Scholar]
- Tang, E.; Wang, J.; Han, Y.; Chen, C. Microscopic damage modes and physical mechanisms of CFRP laminates impacted by ice projectile at high velocity. J. Mater. Res. Technol. 2019, 8, 5671–5686. [Google Scholar] [CrossRef]
- Beland, S. High Performance Thermoplastic Resins and Their Composites, 1st ed.; William Andrew: Norwich, NY, USA, 1990. [Google Scholar]
- Vieille, B.; Casado, V.M.; Bouvet, C. About the impact behavior of woven-ply carbon fiber-reinforced thermoplastic-and thermosetting-composites: A comparative study. Compos. Struct. 2013, 101, 9–21. [Google Scholar] [CrossRef] [Green Version]
- Lopes, C.; Seresta, O.; Abdalla, M.; Gurdal, Z.; Thuis, B.; Camanho, P. Stacking sequence dispersion and tow-placement for improved damage tolerance. In Proceedings of the 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 16th AIAA/ASME/AHS Adaptive Structures Conference, 10th AIAA Non-Deterministic Approaches Conference, 9th AIAA Gossamer Spacecraft Forum, 4th AIAA Multidisciplinary Des., Schaumburg, IL, USA, 7–10 April 2008; p. 1735. [Google Scholar]
- York, C.B. Unified approach to the characterization of coupled composite laminates: Benchmark configurations and special cases. J. Aerosp. Eng. 2010, 23, 219–242. [Google Scholar] [CrossRef]
- Dorey, G. Failure Mode of Composite Materials with Organic Matrices and Their Consequences in Design. 1975. Available online: https://apps.dtic.mil/sti/citations/ADA018178 (accessed on 31 July 2022).
- Park, R.; Jang, J. Impact behavior of aramid fiber/glass fiber hybrid composites: The effect of stacking sequence. Polym. Compos. 2001, 22, 80–89. [Google Scholar] [CrossRef]
- Abrate, S. Impact Engineering of Composite Structures; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011; Volume 526. [Google Scholar]
- Gellert, E.P.; Cimpoeru, S.J.; Woodward, R.L. A study of the effect of target thickness on the ballistic perforation of glass-fibre-reinforced plastic composites. Int. J. Impact Eng. 2000, 24, 445–456. [Google Scholar] [CrossRef]
- Icten, B.M.; Kıral, B.G.; Deniz, M.E. Impactor diameter effect on low velocity impact response of woven glass epoxy composite plates. Compos. Part. B Eng. 2013, 50, 325–332. [Google Scholar] [CrossRef]
- Sevkat, E.; Liaw, B.; Delale, F. Drop-weight impact response of hybrid composites impacted by impactor of various geometries. Mater. Des. 1980–2015 2013, 52, 67–77. [Google Scholar] [CrossRef]
- Safri, S.N.A.; Sultan, M.T.H.; Yidris, N.; Mustapha, F. Low velocity and high velocity impact test on composite materials—A review. Int. J. Eng. Sci 2014, 3, 50–60. [Google Scholar]
- Lee, S.-M.; Cheon, J.-S.; Im, Y.-T. Experimental and numerical study of the impact behavior of SMC plates. Compos. Struct. 1999, 47, 551–561. [Google Scholar] [CrossRef]
- Liu, J.; Liu, H.; Kaboglu, C.; Kong, X.; Ding, Y.; Chai, H.; Blackman, B.R.; Kinloch, A.J.; Dear, J.P. The impact performance of woven-fabric thermoplastic and thermoset composites subjected to high-velocity soft- and hard-impact loading. Appl. Compos. Mater. 2019, 26, 1389–1410. [Google Scholar] [CrossRef]
- Gustin, J.; Joneson, A.; Mahinfalah, M.; Stone, J. Low velocity impact of combination Kevlar/carbon fiber sandwich composites. Compos. Struct. 2005, 69, 396–406. [Google Scholar] [CrossRef]
- Zhao, Y.; Addepalli, S.; Sirikham, A.; Roy, R. A confidence map based damage assessment approach using pulsed thermographic inspection. NDT E Int. 2018, 93, 86–97. [Google Scholar] [CrossRef]
- Othman, R.; Ogi, K.; Yashiro, S. Characterization of microscopic damage due to low-velocity and high-velocity impact in CFRP with toughened interlayers. Mech. Eng. J. 2016, 3, 16-00151. [Google Scholar] [CrossRef] [Green Version]
Mechanical Properties | Results |
---|---|
0° Tensile strength (MPa) | 1065 |
0° Tensile modulus (GPa) | 44.6 |
90° Tensile strength (MPa) | 1035 |
90° Tensile modulus (GPa) | 42.8 |
0° Compressive strength (MPa) | 640 |
0° Compressive modulus (GPa) | 59 |
90° Compressive strength (MPa) | 610 |
90° Compressive modulus (GPa) | 57 |
In-plane shear strength (MPa) | 108 |
In-plane shear modulus (GPa) | 2.5 |
0° Interlaminar shear strength (MPa) | 64.2 |
Specimen Number | Panel Thickness (mm) | Number of Layers | Type of Fibre |
---|---|---|---|
1, 2, 3, 4 13, 14, 15, 16,17, 18 | 1.05 | 3 | CF |
5, 6, 7, 8 9, 10, 11, 12 | 1.40 | 4 | CF + kevlar |
Sample Number | Panel Materials | Projectile Type | Angle of Impact | Projectile Weight (g) | Impact Velocity (m/s) | Energy (J) |
---|---|---|---|---|---|---|
1 | CF | Sharp | 28.5° | 5.12 | 38.4 | 3.1 |
2 (p) | CF | Sharp | 28.5° | 6.12 | 76.9 | 15.4 |
3 | CF | Smooth | 28.5° | 5.32 | 35.0 | 2.7 |
4 (p) | CF | Smooth | 28.5° | 5.82 | 68.9 | 11.6 |
5 | CF + Kevlar | Sharp | 28.5° | 6.40 | 29.4 | 2.8 |
6 | CF + Kevlar | Sharp | 28.5° | 4.70 | 29.4 | 2.0 |
6 | CF + Kevlar | Sharp | 28.5° | 5.62 | 57.1 | 7.7 |
7 | CF + Kevlar | Smooth | 28.5° | 4.80 | 37.7 | 3.4 |
8 | CF + Kevlar | Smooth | 28.5° | 6.09 | 58.8 | 8.9 |
9 | CF + Kevlar | Smooth | 90° | 4.20 | 24.2 | 1.2 |
10 | CF + Kevlar | Smooth | 90° | 4.70 | 76.9 | 13.9 |
11 | CF + Kevlar | Sharp | 90° | 5.60 | 18.3 | 0.9 |
11 | CF + Kevlar | Sharp | 90° | 5.60 | 44.4 | 5.5 |
12 | CF + Kevlar | Sharp | 90° | 4.70 | 74.0 | 12.9 |
13 | CF | Sharp | 90° | 3.10 | 37.7 | 2.2 |
14 | CF | Sharp | 90° | 4.10 | 71.0 | 10.3 |
14 | CF | Sharp | 90° | 6.60 | 45.8 | 6.9 |
14(p) | CF | Sharp | 90° | 6.60 | 102.5 | 34.7 |
15 | CF | Smooth | 90° | 2.90 | 37.4 | 2.0 |
16 | CF | Smooth | 90° | 5.70 | 15 | 0.6 |
16 | CF | Smooth | 90° | 5.70 | 25 | 1.8 |
16 (p) | CF | Smooth | 90° | 5.70 | 74 | 15.6 |
17 | CF | Sharp | 28.5° | 5.18 | 27.4 | 1.9 |
17 | CF | Sharp | 28.5° | 4.87 | 33.9 | 2.8 |
18 | CF | Smooth | 28.5° | 5.12 | 58.8 | 7.3 |
Sample | Material | Projectile | Energy (J) | Front Face Damage | Back Face Damage |
---|---|---|---|---|---|
13 | CF | Sharp | 2.2 | Matrix cracking | No visual damage |
15 | CF | Smooth | 2.7 | Matrix cracking and indentation | Matrix crack |
9 | CF + Kevlar | Smooth | 0.9 | None | No visual damage |
11 | CF + Kevlar | Sharp | 1.2 & 6.5 | Fibre peel-off on the first layer and indentation | Matrix crack |
10 | CF + Kevlar | Smooth | 16.9 | Matrix cracking, fibre peel-off, and indentation | Cross fracture and delamination |
12 | CF + Kevlar | Sharp | 15.6 | Matrix cracking, fibre pee-off, and indentation | Cross fracture and delamination |
Sample | Material | Projectile | Energy | Type of Front Face Damage | Type of Back Face Damage |
---|---|---|---|---|---|
1 | CF | Sharp | 3.1 J | Matrix cracking & Fibres exposed | Matrix cracking |
3 | CF | Smooth | 2.7 J | Fibres exposed | No visual damage |
7 | CF + Kevlar | Smooth | 3.4 J | Scratch | No visual damage |
6 | CF + Kevlar | Sharp | 7.7 J & 2 J | Matrix cracking & Fibre breakage | no visual damage |
8 | CF + Kevlar | Smooth | 8.9 J | Concentration region | Matrix cracking |
18 | CF | Smooth | 7.3 J | Matrix concentration & cracking (a,b) | Matrix cracking |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodriguez, V.M.; Grasso, M.; Zhao, Y.; Liu, H.; Deng, K.; Roberts, A.; Appleby-Thomas, G.J. Surface Damage in Woven Carbon Composite Panels under Orthogonal and Inclined High-Velocity Impacts. J. Compos. Sci. 2022, 6, 282. https://doi.org/10.3390/jcs6100282
Rodriguez VM, Grasso M, Zhao Y, Liu H, Deng K, Roberts A, Appleby-Thomas GJ. Surface Damage in Woven Carbon Composite Panels under Orthogonal and Inclined High-Velocity Impacts. Journal of Composites Science. 2022; 6(10):282. https://doi.org/10.3390/jcs6100282
Chicago/Turabian StyleRodriguez, Veronica Marchante, Marzio Grasso, Yifan Zhao, Haochen Liu, Kailun Deng, Andrew Roberts, and Gareth James Appleby-Thomas. 2022. "Surface Damage in Woven Carbon Composite Panels under Orthogonal and Inclined High-Velocity Impacts" Journal of Composites Science 6, no. 10: 282. https://doi.org/10.3390/jcs6100282
APA StyleRodriguez, V. M., Grasso, M., Zhao, Y., Liu, H., Deng, K., Roberts, A., & Appleby-Thomas, G. J. (2022). Surface Damage in Woven Carbon Composite Panels under Orthogonal and Inclined High-Velocity Impacts. Journal of Composites Science, 6(10), 282. https://doi.org/10.3390/jcs6100282