Numerical Simulation of Two-Phase Flow in Liquid Composite Moulding Using VOF-Based Implicit Time-Stepping Scheme
Abstract
:1. Introduction
2. Numerical Simulation Approach
2.1. Volume of Fluid (VOF)
2.2. Time-Stepping Scheme
2.3. Darcy’s Law for a Transient Flow
3. Results and Discussion
3.1. Two-Dimensional Rectangular Mould for Regular Shapes
3.2. Three-Dimensional Curved Mould for Complex Shapes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Månson, J.A.E.; Wakeman, M.D.; Bernet, N. Composite Processing and Manufacturing—An Overview; Comprehensive Composite Materials; Elsevier: Amsterdam, The Netherlands, 2000; pp. 577–607. ISBN 978-0-08-042993-9. [Google Scholar]
- Ermanni, P.; Di Fratta, C.; Trochu, F. Molding: Liquid composite molding(Lcm). In Wiley Encyclopedia of Composites; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; p. weoc153. [Google Scholar]
- Tan, H.; Pillai, K.M. Multiscale modeling of unsaturated flow in dual-scale fiber preforms of liquid composite molding I: Isothermal flows. Compos. Part A Appl. Sci. 2012, 43, 14–28. [Google Scholar] [CrossRef]
- Hoes, K.; Dinescu, D.; Sol, H.; Vanheule, M.; Parnas, R.S.; Luo, Y.; Verpoest, I. New set-up for measurement of permeability properties of fibrous reinforcements for RTM. Compos. Part A Appl. Sci. 2002, 33, 959–969. [Google Scholar] [CrossRef]
- Binétruy, C.; Hilaire, B.; Pabiot, J. The interactions between flows occurring inside and outside fabric tows during rtm. Compos. Sci. Technol. 1997, 57, 587–596. [Google Scholar] [CrossRef]
- Luce, T.L.; Advani, S.G.; Howard, J.G.; Parnas, R.S. Permeability characterization. Part 2: Flow behavior in multiple-layer preforms. Polym. Compos. 1995, 16, 446–458. [Google Scholar] [CrossRef]
- Schmachtenberg, E.; Schulte zur Heide, J.; Töpker, J. Application of ultrasonics for the process control of Resin Transfer Moulding (Rtm). Polym. Test. 2005, 24, 330–338. [Google Scholar] [CrossRef]
- Carlone, P.; Rubino, F.; Paradiso, V.; Tucci, F. Multi-scale modeling and online monitoring of resin flow through dual-scale textiles in liquid composite molding processes. Int. J. Adv. Manuf. Technol. 2018, 96, 2215–2230. [Google Scholar] [CrossRef]
- Babu, B.Z.; Pillai, K.M. Experimental investigation of the effect of fiber-mat architecture on the unsaturated flow in liquid composite molding. J. Compos. Mater. 2004, 38, 57–79. [Google Scholar] [CrossRef]
- Lawrence, J.M.; Barr, J.; Karmakar, R.; Advani, S.G. Characterization of preform permeability in the presence of race tracking. Compos. Part A Appl. Sci. 2004, 35, 1393–1405. [Google Scholar] [CrossRef]
- Di Fratta, C.; Klunker, F.; Trochu, F.; Ermanni, P. Characterization of textile permeability as a function of fiber volume content with a single unidirectional injection experiment. Compos. Part A Appl. Sci. 2015, 77, 238–247. [Google Scholar] [CrossRef]
- Di Fratta, C.; Koutsoukis, G.; Klunker, F.; Ermanni, P. Fast method to monitor the flow front and control injection parameters in resin transfer molding using pressure sensors. J. Compos. Mater. 2016, 50, 2941–2957. [Google Scholar] [CrossRef]
- Simacek, P.; Advani, S.G. A numerical model to predict fiber tow saturation during liquid composite molding. Compos. Sci. Technol. 2003, 63, 1725–1736. [Google Scholar] [CrossRef]
- Rodrigues, I.; Amico, S.C.; Souza, J.A.; de Lima, A.G.B. Numerical analysis of the resin transfer molding process via pam-rtm software. Defect Diffus. Forum 2015, 365, 88–93. [Google Scholar]
- Grössing, H.; Stadlmajer, N.; Fauster, E.; Fleischmann, M.; Schledjewski, R. Flow front advancement during composite processing: Predictions from numerical filling simulation tools in comparison with real-world experiments. Polym. Compos. 2016, 37, 2782–2793. [Google Scholar] [CrossRef]
- Şaş, H.S. Modeling of Particle Filled Resin Impregnation in Compression Resin Transfer Molding. Master’s Thesis, Middle East Technical University, Ankara, Turkey, 2010. [Google Scholar]
- Voller, V.R.; Peng, S. An algorithm for analysis of polymer filling of molds. Polym. Eng. Sci. 1995, 35, 1758–1765. [Google Scholar] [CrossRef]
- Facciotto, S.; Simacek, P.; Advani, S.G.; Middendorf, P. Modeling of anisotropic dual scale flow in RTM using the finite elements method. Compos. Part B Eng. 2021, 214, 108735. [Google Scholar] [CrossRef]
- Nielsen, D.R.; Pitchumani, R. Closed-loop flow control in resin transfer molding using real-time numerical process simulations. Compos. Sci. Technol. 2002, 62, 283–298. [Google Scholar] [CrossRef]
- Lam, Y.C.; Joshi, S.C.; Liu, X.L. Numerical simulation of the mould-filling process in resin-transfer moulding. Compos. Sci. Technol. 2000, 60, 845–855. [Google Scholar] [CrossRef]
- Matsuzaki, R.; Kobayashi, S.; Todoroki, A.; Mizutani, Y. Flow control by progressive forecasting using numerical simulation during vacuum-assisted resin transfer molding. Compos. Part A Appl. Sci. 2013, 45, 79–87. [Google Scholar] [CrossRef]
- Wei, B.J.; Chuang, Y.C.; Wang, K.H.; Yao, Y. Model-assisted control of flow front in resin transfer molding based on real-time estimation of permeability/porosity ratio. Polymers 2016, 8, 337. [Google Scholar] [CrossRef] [Green Version]
- Young, J.B. An equation of state for steam for turbomachinery and other flow calculations. J. Eng. Gas Turbines Power 1988, 110, 1–7. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Vu, D.T.; Park, W.G.; Jung, Y.R. Numerical analysis of water impact forces using a dual-time pseudo-compressibility method and volume-of-fluid interface tracking algorithm. Comput. Fluids 2014, 103, 18–33. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Park, W.G. A free surface flow solver for complex three-dimensional water impact problems based on the VOF method: A Free Surface Flow Solver for Complex 3D Water Impact Problems. Int. J. Numer. Methods Fluids 2016, 82, 3–34. [Google Scholar] [CrossRef]
- ANSYS. ANSYS Academic Research Fluent, Release 19.2, Help System, Theory Guide; ANSYS, Inc.: Canonsburg, PA, USA, 2019. [Google Scholar]
- Geng, Y.; Jiang, J.; Chen, N. Local impregnation behavior and simulation of non-crimp fabric on curved plates in vacuum assisted resin transfer molding. Compos. Struct. 2019, 208, 517–524. [Google Scholar] [CrossRef]
- Venkateswaran, S.; Merkle, C. Dual time-stepping and preconditioning for unsteady computations. In Proceedings of the 33rd Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 9–12 January 1995; American Institute of Aeronautics and Astronautics: Reno, NV, USA, 1995. [Google Scholar]
- Cai, Z. Analysis of mold filling in rtm process. J. Compos. Mater. 1992, 26, 1310–1338. [Google Scholar]
- Alotaibi, H.; Jabbari, M.; Soutis, C. A numerical analysis of resin flow in woven fabrics: Effect of local tow curvature on dual-scale permeability. Materials 2021, 14, 405. [Google Scholar] [CrossRef] [PubMed]
References | Fabric Architecture | Injection Method | Flow Modelling | Computational Approach |
---|---|---|---|---|
Tan et al. [3] | Bi-axial | Unidirectional | Dual-scale | FE/CV-PoreFlow |
Simacek et al. [13] | UD | Unidirectional | Dual-scale | FE/CV-LIMS |
Oliveira et al. [14] | Fibre mats | Unidirectional | − | Darcy-based PAM-RTM |
Grossing et al. [15] | UD/Triaxial NCF | Radial | Dual-scale | FVM-VOF OpenFoam |
Sas et al. [16] | UD | Unidirectional | − | FEM-LSM COMSOL |
Wei et al. [22] | Fibre mats | Unidirectional | − | FVM-VOF Moldex3D |
Medium Porosity [%] | Time-Stepping Size [s] | CPU [s] | Real Time [s] |
---|---|---|---|
40 | 5 | 19.75 | 481 |
25 | 5.44 | 89 | |
50 | 2.97 | 57 | |
50 | 5 | 14.67 | 319 |
25 | 3.76 | 67 | |
50 | 2.2 | 40 | |
60 | 5 | 8.14 | 148 |
25 | 2.26 | 42 | |
50 | 1.55 | 26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alotaibi, H.; Abeykoon, C.; Soutis, C.; Jabbari, M. Numerical Simulation of Two-Phase Flow in Liquid Composite Moulding Using VOF-Based Implicit Time-Stepping Scheme. J. Compos. Sci. 2022, 6, 330. https://doi.org/10.3390/jcs6110330
Alotaibi H, Abeykoon C, Soutis C, Jabbari M. Numerical Simulation of Two-Phase Flow in Liquid Composite Moulding Using VOF-Based Implicit Time-Stepping Scheme. Journal of Composites Science. 2022; 6(11):330. https://doi.org/10.3390/jcs6110330
Chicago/Turabian StyleAlotaibi, Hatim, Chamil Abeykoon, Constantinos Soutis, and Masoud Jabbari. 2022. "Numerical Simulation of Two-Phase Flow in Liquid Composite Moulding Using VOF-Based Implicit Time-Stepping Scheme" Journal of Composites Science 6, no. 11: 330. https://doi.org/10.3390/jcs6110330
APA StyleAlotaibi, H., Abeykoon, C., Soutis, C., & Jabbari, M. (2022). Numerical Simulation of Two-Phase Flow in Liquid Composite Moulding Using VOF-Based Implicit Time-Stepping Scheme. Journal of Composites Science, 6(11), 330. https://doi.org/10.3390/jcs6110330