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Abstract: The mechanical properties of composites are affected by their constituents. For the devel-
opment of high-performance composites, it is expected that a technique will be developed which
can predict the mechanical properties of composites based on the mechanical properties of their
constituents. This study developed a technique based on a micromechanical approach to predict
the mechanical properties of composites with interfacial phases between reinforcements and matrix.
A double-inclusion model (Hori and Nemat-Nasser, 1993) is effective for the solution of such prob-
lems, of which the validity remains unclear. Problems with a particle surrounded by an interfacial
phase embedded in an infinite body were calculated via the model and finite element analysis to
verify the model. It was found that the macroscopic average stress of the double inclusion could be
accurately solved by the model, although the microscopic stress of each phase could not be calculated
with high accuracy. Therefore, a micromechanical approach based on the model was formulated and
applied to particulate-dispersed composites consisting of zirconia and titanium, and fabricated by
spark plasma sintering, in which Ti oxides were created along the interface between zirconia and
titanium. As a result, the elastic-plastic stress–strain curves of the composites could be predicted.
The approach can investigate the mechanical properties of composites with various shapes of rein-
forcement surrounded by dissimilar materials in a matrix. It can be concluded that the approach is
promising for the development of composites with an excellent mechanical performance.

Keywords: micromechanics; sintering; multi-phase composite; titanium; zirconia

1. Introduction

To achieve mechanical performance superior to that possible with monolithic mate-
rials, composites and functionally graded materials (FGMs) have been developed. The
matrices and reinforcements of these materials can be made of metals, ceramics, and plas-
tics, depending on the application. Composites consisting of ceramics and metals are of
interest because they may be anticipated to possess conflicting characteristics. Recently,
biocompatible composites and FGMs have been explored for applications in implants,
because they need to withstand severe loading in vivo. A wide range of properties are
necessary for implant materials: high strength, high toughness, high hardness, high wear-
resistance, and low stiffness, for mechanical properties, and bioinertness or bioactivity and
non-toxicity, for chemical properties. To achieve these characteristics, titanium (Ti) and
its alloys, stainless steels, and other biocompatible metals have been used, while among
non-metals, partially stabilized zirconia (PSZ), alumina, hydroxyapatite (HA), and other
biocompatible ceramics have been used [1–5]. To achieve the desired characteristics for
implants, the development of composites consisting of biocompatible metals and ceramics
has been pursued [6–8]. As the atomic bonding in ceramics is very different from that of
metals, ceramic-metal composites have been fabricated by bonding melted metals with
solid ceramics or by solid-state bonding of metals with ceramics. In particular, powder
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metallurgy (PM) has been often used to give more freedom in the choice of the materials,
shapes, and arrangement of reinforcement materials. Several candidates for implant mate-
rials have been fabricated via PM [9–13]. We also fabricated biocompatible composites and
FGMs using the biocompatible metals titanium and zirconium and biocompatible ceramics
HA, alumina, and PSZ via hot pressing (HP) and spark plasma sintering (SPS) [14–19].
Among these material combinations, the combination of PSZ and Ti exhibited better me-
chanical properties compared with the others. However, interphase compounds such as
Ti oxides were created during sintering because Zr and O atoms in the PSZ phase would
diffuse into the Ti phase [20–22], as shown in Figure 1, resulting in the fabrication of
three-phase particulate-dispersed composites. Figure 2 shows the mechanical performance
of the composites, and indicates that all the composites exhibited brittleness and that their
elastic properties could not be predicted by the rule of mixture. Their mechanical perfor-
mance tended to be lower than expected, due to the presence of reaction phases, and we
concluded that such phases were bound to be formed when the composites were made by
the sintering of PSZ and Ti powders. Fernandez-Garcia et al. [23,24] also demonstrated the
same results. Hence, it is necessary to evaluate the mechanical performance of multi-phase
composites, and a micromechanical approach is useful for the evaluation. Hori and Nemat-
Nasser [25] proposed a method to predict the stress state of a double inclusion in an infinite
medium, based on the Mori-Tanaka mean-field concept [26] and Eshelby’s equivalent inclu-
sion method [27] (the so-called double-inclusion model, DIM). Furthermore, they extended
DIM to the prediction of the mechanical properties of multi-phase composites. DIM has
successfully predicted the mechanical properties of several composites [28–30]. However,
the accuracy of DIM remains unclear. If DIM can accurately calculate the stress state of
a composite, it can be used to predict mechanical properties and to propose appropriate
composites with superior mechanical properties.
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This study aimed to investigate a micromechanical approach based on DIM, to pre-
dict the mechanical properties of three-phase composites. As an example, the model was
applied to PSZ-Ti composites in which a Ti oxide surrounded the PSZ phase dispersed
in the Ti matrix. A finite element analysis (FEA) of a model in which one PSZ particle
is surrounded with Ti oxide in a Ti matrix was also performed. The microscopic stress
of each phase calculated via FEA was compared with that determined via DIM, to ex-
amine its validity. Following this, the Young’s moduli of the PSZ-Ti composites with
various volume fractions of Ti were solved via DIM, and compared with experimental
results. The compositions of composites consisting of Ti, Ti oxide, and PSZ were esti-
mated from a mechanical viewpoint. The stress–strain relations of the composites were
also investigated.

2. Double-Inclusion Model and Its Accuracy

As a first step to develop a micromechanical approach able to predict the mechanical
properties of particulate-dispersed composites with a reaction phase as shown in Figure 3,
the accuracy of DIM was evaluated. Note that the reaction phase was actually identified as
Ti oxide (Ti2O) or a mixed oxide (Ti2ZrO), etc. [14–16]. The reaction phase was assumed
to be Ti oxide of Ti2O for the sake of simplicity in this study. Although DIM has been
re-formulated in other equation forms by several researchers [31,32], the original DIM pro-
posed by Hori and Nemat-Nasser [25] was used to characterize the mechanical properties
of the composites in this study. In this section, the original DIM is firstly explained, and
then the results solved via DIM are compared with those calculated via FEA.
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Figure 3. Schematic of PSZ-Ti composite fabricated via powder metallurgy technique [14,15].

2.1. Double-Inclusion Model

Figure 4a shows a schematic of a double inclusion in an infinite medium subjected to
tensile remote-stress σ∞ in the vertical direction. An Ω phase is surrounded by a Γ phase,
and they are embedded in an infinite medium, B phase. Additionally, an R phase denotes
the sum of Ω and Γ phases: R = Ω + Γ. The stiffness of the B phase is simply denoted by C,
and the stiffnesses of the Ω and G phases are denoted CΩ and CΓ, respectively. The stress
and strain of each phase are denoted by σ and ε with the superscript corresponding to the
phase, similar to the notation for stiffness. Note that the Ti2O phase would be formed due to
oxygen diffusion from the PSZ phase into the Ti phase [20–22], and the Ω, Γ, and B phases
are considered to be a PSZ particle, Ti2O around the particle, and the Ti matrix. When
remote stress is applied, DIM is useful for solving the stress of each phase. In DIM, the Ω
and Γ phases with stiffnesses CΩ and CΓ are replaced by the Ω* and Γ* phases with stiffness
C, which is that of the matrix with eigenstrains of εΩ∗ and εΓ∗ , respectively: Figure 4b shows
the equivalent problem to Figure 4a. According to this formulation, the stresses and strains
of the Ω and Γ phases are calculated via DIM.
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The microscopic average stresses of the Ω and Γ phases, which are denoted as 〈σ〉Ω

and 〈σ〉Γ, respectively, are given by

〈σ〉Ω = C
[
I + ∆SΦΓ +

(
SΩ − I

)
ΦΩ
]
ε∞, (1)

〈σ〉Γ = C
[
I +

(
SR − I− f

1− f ∆S
)

ΦΓ + f
1− f ∆SΦΩ

]
ε∞, (2)

where I is the identity matrix. The tensors SΩ, SΓ, and SR are the Eshelby tensors of the Ω,
Γ, and R phases, respectively. The tensor ∆S is defined as SR − SΓ. The volume fraction f is
given by the volume of the Ω phase divided by the volume of the R phase: f = Ω / R. The
relationship between remote stress and strain is given by

σ∞ = Cε∞. (3)

The tensors ΦΓ and ΦΩ are given by the following equations,

ΦΩ = −
[(

SΩ + E1
)
+ ∆S

(
SΩ − f

1− f ∆S + E2
)−1(

SΩ − f
1− f ∆S + E1

)]−1
, (4)

ΦΓ = −
[

∆S +
(

S + E1
)
+

(
SΩ − f

1− f
∆S + E1

)−1(
SΩ − f

1− f
∆S + E2

)]−1

, (5)

where E1 =
(

CΩ − C
)−1

C and E2 =
(

CΓ − C
)−1

C. In the materials targeted in this study,
the reaction phase is assumed to be formed around a particle, and the Ω and Γ phases are
concentric spheres, as shown in the figure. Therefore, the tensors SΩ and SΓ coincide, and
the tensor ∆S becomes null. Hence, Equations (1) and (2) are given by

〈σ〉Ω = C

[
I−

(
SΩ − I

){
SΩ +

(
CΩ − C

)−1
C
}−1

]
ε∞, (6)

〈σ〉Γ = C

[
I−

(
SΩ − I

){
SΩ +

(
CΓ − C

)−1
C
}−1

]
ε∞. (7)

According to these equations, the average stress in each phase is constant, irrespective
of the volume fraction, f. The average stress of the R phase is given by the volume average
of the stresses in the Ω and Γ phases, and is given by the rule of mixture,

〈σ〉R = 〈σ〉Ω f + 〈σ〉Γ(1− f ) . (8)
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2.2. Validation of Double-Inclusion Model
2.2.1. Finite Element Analysis

Although DIM can analytically calculate the microscopic average stress of each phase
of double inclusions, as mentioned above, its accuracy remains unclear. FEA was performed
on a single double-inclusion, with the Ω and Γ phases embedded in the B phase subjected
to remote stress σ∞ in the vertical direction, as shown in Figure 5. Axial symmetry was
applied to the y axis, and a one-quarter model was calculated to deal with a concentric
spherical double-inclusion. Note that meshes cannot be infinitely generated, and this
study performed calculations for a double inclusion embedded in a cylindrical body that
was sufficiently large compared to the double inclusion. In this case, the radius of the
Ω phase was set at 10 µm, while the length of one side of the model was set at 400 µm.
Comparing this to Figure 3, the Ω, Γ, and B phases are considered to be the PSZ, Ti2O, and
Ti phases, respectively, and their elastic properties are tabulated in Table 1. The elastic
moduli of Ti and PSZ were determined based on bend testing [15], and those of Ti oxide
were determined from [33,34]. Note that these values were rounded from the experimental
results for simplicity in this section, while the actual values were used in Section 3 to
compare the analytical results with the experimental results. The average stresses of the
Ω, Γ, and R phases with various thicknesses of Ti oxide t/r were calculated via FEA
and DIM, and these stresses were compared. These analyses were conducted using the
general-purpose software ANSYS.
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Table 1. Elastic properties of Ti, Ti oxide, and PSZ used in this section.

Material Young’s Modulus, E (GPa) Poisson’s Ratio, ν

Ti 100 0.3
Ti oxide (Ti2O) 300 0.28

PSZ 200 0.2

2.2.2. Results and Discussion for Assessing Validity of Double-Inclusion Model

Figure 6 shows the distribution of normalized stress σy/σ∞ near a double inclusion
with thickness t/r of 1.0. The stress in the Ω phase is uniform, while the stress distributes
non-uniformly in the Γ phase; in particular, the stress concentrates in the Γ phase near the
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interface of the Ω phase at the x axis. In contrast, the stress in the B phase becomes lower
near the interface of the Γ phase at the x axis.
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Figure 7 shows the microscopic average stresses of the Ω and Γ phases with various
thicknesses of the Γ phase. The average stress via FEM was calculated as the volume
average of the stresses of all elements in each phase. In FEA, the case of only the Ω (Γ)
phase embedded in the B phase was also analyzed, and their stresses were also plotted. The
average stress σy of each phase was normalized by the remote stress, σ∞. The stress of each
phase decreases with increasing thickness, and the stress of the Γ phase is higher than that
of the Ω phase, irrespective of thickness. As mentioned in Section 2.1, the average stresses
of the Ω and Γ phases are constant, irrespective of the volume fraction, f. As for the Γ phase,
the stress obtained via FEA is higher than that via DIM, but as the thickness decreases, the
stress via FEA asymptotically approaches that obtained via DIM. Moreover, the stresses
obtained via FEA and DIM are almost the same when only the Γ phase is embedded in the
B phase. The opposite trend is observed for the Ω phase: the stresses obtained via FEA and
DIM are almost the same when only the Ω phase is embedded in the B phase. In this case,
the stress via FEA decreases with increasing thickness, and converges to a certain value.
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Figure 8 shows the results of the average normal stresses of the R (=Ω + Γ) phase
with various thicknesses of the Γ phase calculated via FEA and DIM. When the thickness,
t/r, is less than approximately 2, the stress calculated via FEM increases with increasing
thickness, t/r. Then, the stress approaches a certain value. These results are the same for the
DIM calculation.
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The case in which a spherical double-inclusion in an infinite body is subjected to shear
is demonstrated in Appendix A. The trends of the stress of each phase calculated via FEA
and DIM for tension are almost the same for shear. Hence, it is concluded that the accuracy
of the microscopic average stresses of the Ω and Γ phases calculated via DIM depends on
the thickness of the Γ phase. This would be because the interaction between the Ω phase
and the Γ phase is not evaluated correctly. On the other hand, DIM accurately calculates
the macroscopic average stress of the R (=Ω + Γ) phase, irrespective of the thickness of the
Γ phase. Considering the actual PSZ-Ti composites, DIM can calculate the average stress of
reinforcement by a PSZ particle including the Ti2O phase, irrespective of the amount of
Ti2O phase created during sintering; the DIM calculation is accurate enough to predict the
macroscopic behavior of PSZ-Ti composites, irrespective of the loading condition.

3. Mechanical Evaluation of Three-Phase Composites
3.1. Modeling of Three-Phase Composite Based on Double-Inclusion Model

The previous section discussed the case of a single double-inclusion in an infinite body,
and this section describes a composite in which many double inclusions are dispersed in
an infinite matrix. Elastic-plastic deformation of the composites is considered to predict
the experimental results [15]. Figure 9 shows a schematic of a composite consisting of
double inclusions of the Ω phase (PSZ) and the Γ phase (Ti2O) in the B phase (Ti). Hori and
Nemat-Nasser [25] demonstrated that the problem for the composites shown in Figure 9a is
equivalent to the problem of a triple inclusion of Ω, Γ, and Γ2 phases in an infinite B phase,
in which the stiffness of the Γ2 phase is the same as that of the B phase shown in Figure 9b.
Furthermore, the problem shown in Figure 9b is equivalent to the problem shown in
Figure 9c, which is the same technique mentioned in the previous section: the Ω, Γ, and Γ2
phases with stiffnesses of CΩ, CΓ, and CΓ2 (= C) are replaced by the Ω∗, Γ∗, and Γ2

∗ phases
with stiffness C with eigenstrain of εΩ∗ , εΓ∗ , and εΓ∗2 , respectively. The phase with combined
Ω, Γ, and Γ2 also denotes an R phase, and the phase with combined εΩ∗ , εΓ∗ , and εΓ∗2 denotes
an R* phase. For simplicity, the triple inclusion is also assumed to be a concentric sphere in
this study, which is reasonable because the target is still particulate-dispersed composites
consisting of PSZ and Ti.
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The increment of average stress of each phase is given by

〈dσ〉Ω = C
[
I +

(
SΩ − I

)
ΨΩ

]
dε∞, (9)

〈dσ〉Γ = C
[
I +

(
SΩ − I

)
ΨΓ

]
dε∞, (10)

〈dσ〉Γ2
= C

[
I +

(
SΩ − I

)
ΨΓ2

]
dε∞ = Cdε∞, (11)

where the tensors ΨΩ, ΨΓ, and ΨΓ2 are the following:

ΨΩ = −
[(

CΩ − C
)

S + C
]−1(

CΩ − C
)

, (12)

ΨΓ = −
[(

CΓ − C
)

S + C
]−1(

CΓ − C
)

, (13)

ΨΓ2 = −[(C− C)S + C]−1(C− C) = 0. (14)

In addition, the average strain increment of each phase is obtained by the following:

〈dε〉Ω = (I + SΨΩ)dε∞ = CΩ−1〈dσ〉Ω, (15)

〈dε〉Γ = (I + SΨΓ)dε∞ = CΓ−1〈dσ〉Γ, (16)

〈dε〉Γ2
= C−1〈dσ〉Γ2

= C−1Cdε∞ = dε∞. (17)

The increments of average stress and strain for the Ω, Γ, and Γ2 phases in the triple
inclusion correspond to the increments of average stress and strain for the Ω, Γ, and B
(matrix) phases in the three-phase composite. Therefore, the increments of average stress
and strain in the matrix are as follows:

〈dσ〉m = 〈dσ〉Γ2
= Cdε∞, (18)

〈dε〉m = 〈dε〉Γ2
= dε∞. (19)

The remote-strain increment of the triple inclusion problem is related to the strain
increment of the composite by the following:

dε∞ = (I + SΦR)
−1 dε. (20)

Finally, the stress–strain relationship for the composite is given by

dσ = C
[
I +

(
SΩ − I

)
ΦR

]
(I + SΦR)

−1dε, (21)

where ΦR is defined as fΩΨΩ + fΓΨΓ, and the values of f Ω and f Γ are the volume fractions
of the Ω and Γ phases, respectively. In this formulation, Ti and PSZ are considered to be
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the matrix and reinforcement, respectively, corresponding to a Ti-rich composite; in the
formulation of PSZ-rich composites, Ti and PSZ are simply interchanged.

To analyze the elastic-plastic deformation of composites, the Ω and Γ phases are
assumed to be isotropic elastic, while the B phase (matrix) is isotropic elastic-plastic. This
means that the Ω, Γ, and B phases are considered to be PSZ, Ti2O, and Ti, respectively. The
equivalent stress-equivalent strain relationship of the matrix is set to be expressed by the
Ramberg–Osgood equation [35]

ε0
e =

σ0
e

E0
+ λ

σ0
0

E0

(
σ0

e

σ00

)1/n

, (22)

where σ0
e, ε0

e, E0, σ0
0, n, and λ are equivalent stress, equivalent strain, Young’s modulus,

yield stress, strain-hardening coefficient, and material constant, respectively. The analysis
of elastic-plastic deformation of the composite requires the equivalent stress in the matrix of
the composite. However, the microscopic stress of the matrix is non-uniformly distributed,
due to the load-bearing of reinforcing particles, as shown in Figure 6. In this study, the
Tohgo–Weng energy approach [36] was used to calculate the average stresses in the matrix,
taking into account the non-uniform deformation in the composite. The initial equivalent
stress of the composite under elastic deformation is given by(

σ0
e

)2
=

3µ0

1− fΩ − fΓ
(2U − fΩ〈σ〉Ω〈ε〉Ω − fΓ〈σ〉Γ〈ε〉Γ)−

3µ0

κ0

(
σ0

m

)2
, (23)

where σ0
m is the average hydrostatic stress of the matrix, µ0 and κ0 are the shear modulus

and bulk modulus of the matrix, respectively, and U is the energy of composite per unit
volume and given by

U =
1
2

σ ε. (24)

The equivalent stress before incremental deformation is described as σ0
e, and the

equivalent stress after incremental deformation is described as σ0
e + dσ0

e. The equivalent
stress increment, dσ0

e, is given by the following:

dσ0
e =

3µ0

σ0e(1− fΩ − fΓ)
(dU − fΩ〈σ〉Ω〈dε〉Ω − fΓ〈σ〉Γ〈dε〉Γ)−

3µ0

σ0eκ0
σ0

mdσ0
m, (25)

where dU is the incremental energy of composite per unit volume,

dU = σ dε (26)

In the incremental analysis, the equivalent stress, σ0
e, of the matrix before incremental

deformation is known, and the equivalent stress after incremental deformation can be
determined using the above equation.

3.2. Application of Double-Inclusion Model for PSZ-Ti Composites
3.2.1. Elastic Properties of PSZ-Ti Composites

The Young’s moduli of the PSZ-Ti composites were calculated by varying their phase
compositions, and then the phase compositions of the composites fabricated via SPS [15]
were estimated, based on the relationship between the Young’s modulus and phase com-
position. In this calculation, the elastic properties of Ti, Ti2O, and PSZ are also used in
Table 2. Figure 10 shows the Young’s modulus as a function of the volume fraction of Ti
added. Note that part of the added Ti was oxidized to Ti2O, etc., during sintering, and
the horizontal axis indicates the volume fraction of Ti + Ti2O. The Young’s modulus in
the vertical axis was normalized by that of the Ti phase, Em. The Young’s modulus of the
composites increases with an increase in the volume fraction of Ti2O. In this figure, the
experimental results of the Young’s modulus as a function of the Ti volume fraction of the
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PSZ-Ti composites fabricated via SPS are also plotted, which are the same as in Figure 2. By
comparing the Young’s moduli of the composites fabricated via SPS with those calculated
via DIM, the volume fraction of Ti2O created during sintering was estimated. Figure 11
shows the estimated constituents of the composites Ti, Ti2O, and PSZ. While single phases
of Ti and PSZ are present in monolithic Ti and PSZ, respectively, the three phases Ti, Ti2O,
and PSZ are present in the composites. If the volume fraction of Ti + Ti2O is less than
80%, the fraction of Ti2O is larger than that of Ti, indicating that most of the added Ti
is oxidized to Ti2O. If the volume fraction of Ti + Ti2O is more than 80%, the fraction of
the Ti phase drastically increases. This means that the metallic Ti phase would remain
after sintering. As for the PSZ-Ti composites fabricated via HP [14], the trend of Ti oxide
formation is almost the same as for the composites fabricated via SPS.

Table 2. Elastic properties of Ti, Ti oxide, and PSZ used for comparing the experimental results with
results obtained by DIM.

Material Young’s Modulus, E (GPa) Poisson’s Ratio, ν

Ti 131.4 0.3
Ti oxide (Ti2O) 300 0.28

PSZ 242.8 0.2
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3.2.2. Elastic-Plastic Properties of PSZ-Ti Composites

Based on the incremental elastic-plastic constitutive model using DIM formulated
in Section 3.1, the stress–strain relations of the PSZ-Ti composites fabricated via SPS are
discussed. The elastic properties of Ti, Ti2O, and PSZ in Table 2 were used, and the elastic-
plastic properties of Ti were set at σ0

0 = 268.2 MPa, n = 0.183, and λ = 0.00241. Note
that these values were obtained from the stress–strain curve of monolithic Ti, which is
shown in Figure 1. Analyses were performed for various volume fractions of the Ti + Ti2O
phase: 75 vol.%, 50 vol.%, 25 vol.%, 10 vol.%, and 5 vol.%. Figure 12 shows the predicted
stress–strain curves of Ti-rich and PSZ-rich composites with various volume fractions of
Ti/(Ti+Ti2O). If Ti/(Ti+Ti2O) is null, the added Ti is fully oxidized, and no metallic Ti phase
is present in the composite. On the other hand, if Ti/(Ti+Ti2O) is 100%, no oxidation occurs
during sintering, and the added metallic Ti remains as it is. In addition, the experimental
results from the bending stress–strain curves shown in Figure 2a are added in this figure.
In a PSZ-rich composite (25%Ti), even if Ti/(Ti+Ti2O) is varied, the volume fraction of the
Ti-related phase is small, so the influence of Ti oxides on the deformation characteristics is
also small. The stress–strain curve obtained via the experiment and that obtained by DIM
for a volume fraction Ti/(Ti+Ti2O) of 0% via DIM coincide. Hence, in PSZ-rich composites,
no metallic Ti phase was present, and the composite deformed in a brittle manner, not
a ductile manner. In contrast, in the Ti-rich composite, the volume fraction of Ti oxidation
strongly affects the elastic-plastic deformation characteristics. If the fraction of Ti2O is large,
the composites exhibit greater stiffness, because the stiffness of Ti2O is higher than that
of metallic Ti. Moreover, the nonlinearity of the stress–strain curve becomes larger as the
fraction of Ti2O increases. Comparing the result obtained by DIM with the experimental
result, non-linearity due to plastic deformation should appear in the stress–strain curve, but
the composite fractured at a much lower stress before plastic deformation occurred. This
would be because an unstable fracture occurred from a small defect in the brittle phases of
the PSZ phase and/or the Ti oxide phase created during sintering.
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For the sake of simplicity in this study, the Ti and PSZ phases are assumed to be the
matrix and reinforcement, respectively, irrespective of the volume fraction of Ti/PSZ. This
assumption is correct for the Ti-rich composites. However, this may be not suitable for the
PSZ-rich composites, because Ti-related phases such as metallic Ti and Ti oxide would be
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dispersed in a PSZ matrix. As mentioned in Section 3.1, calculations can be performed
simply by interchanging the properties of PSZ and Ti for the PSZ-rich composites. Although
it must be possible to perform calculations with the PSZ and Ti phases interchanged, this
study did not deal exactly with the Ti phase, due to the accuracy of the DIM calculations;
thus, the microscopic average stress of each phase could not be calculated accurately, as
shown in Figure 7 and in A4. If DIM can be improved so that the microscopic average stress
of each phase can be accurately analyzed, the PSZ-rich composites will be further studied
in detail. In addition, from the viewpoint of calculation accuracy, the elastic properties
of Ti oxide should be clarified. As mentioned in Section 2.1, the Ti phase is chemically
reacted with the constituent elements of PSZ to form Ti2O, Ti2ZrO, etc., and the Ti2O was
described in this paper as a representative of those phases. At this moment, the mechanical
properties of such phases remain unknown, and those of Ti2O obtained from [33,34] are
used in this study. It is expected that clarification of the mechanical properties of each
phase and the improvement of DIM to accurately calculate the microscopic average stress
and strain of each phase will enable more detailed evaluation of the mechanical properties
of the composites.

Sintering is commonly used to fabricate metal matrix composites and ceramic matrix
composites. Densification progresses with atomic diffusion during sintering, and a diffusion
layer is formed along the interface between the reinforcement and matrix. The mechanical
properties of the composites have conventionally been evaluated based on the mechanical
properties of the reinforcement and matrix only. However, the diffusion layer must affect the
mechanical properties of the sintered composites. Note that the geometry and properties of
the diffusion layer would depend on the sintering conditions. Hence, the micromechanical
approach developed in this study can evaluate the mechanical properties of such composites
by considering not only the matrix and reinforcement, but also the diffusion layer. In this
study, the approach was applied to the particulate-dispersed composites consisting of
PSZ and Ti as an example, and its effectiveness was verified. In recent years, composites
using reinforcements coated with functional materials have also been developed [37], and
their mechanical properties would be predicted by the approach. It should be noted that
the approach is versatile, because it can be applied to various composite materials, for
example, long-fiber reinforced composites, by changing the Eshelby tensors. The approach
was found to be useful in the development of high-performance composites because of its
ability to predict the mechanical properties of three-phase composites, with high accuracy.

4. Conclusions

To predict the mechanical properties of composites with dissimilar interfacial phases
between the reinforcements and the matrix, a micromechanical approach was developed,
based on the double-inclusion model. The results obtained in this study are summarized
as follows:

1. The double-inclusion model can accurately predict the macroscopic stress state in the
composites. However, it is not possible for the double-inclusion model to accurately
calculate the microscopic stress of each phase simultaneously.

2. The micromechanical approach was formulated. The approach can predict the elastic-
plastic behavior of a composite in which reinforcements surrounded by dissimilar
materials are placed in a matrix.

3. The micromechanical approach was applied to the PSZ-Ti composites fabricated
via spark plasma sintering, in which Ti oxides were created between the Ti and
PSZ phases. The volume fraction of the Ti oxides was mechanically estimated, and
the elastic-plastic stress–strain relations of the composites could be predicted. The
approach is found to be effective for accurately predicting the mechanical properties
of sintered composites.



J. Compos. Sci. 2022, 6, 356 13 of 16

Author Contributions: Conceptualization, K.T.; methodology, T.F. and T.O.; validation, T.F., K.T., T.O.
and Y.S.; formal analysis, T.F. and T.O.; investigation, K.T. and T.F.; resources, K.T.; data curation, T.F.;
writing—original draft preparation, T.F.; writing—review and editing, T.F.; visualization, T.F.; project
administration, K.T.; funding acquisition, K.T. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by JSPS KAKENHI Grant Number (B)15H03891.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A Double Inclusion Subjected to Shear

To discuss the calculation accuracy of DIM, a double inclusion in an infinite body
subjected to shear was analyzed. The stress distribution and microscopic average stress of
each phase was calculated via DIM and FEA, similar to Section 2.2.

Figure A1 shows the calculation model for a concentric spherical double-inclusion
in a cubic body which is sufficiently large, compared with the inclusion. The radius of
the Ω phase was set at 10 µm, and the length of one side of the body was set at 800 µm.
The Ω phase surrounded with the Γ phase was embedded in the B phase, and the remote
shear-stress, τ∞, was applied to all four sides of the body. Due to symmetry, a half-model
of this double-inclusion problem was solved with various thicknesses of the Γ phase t/r.
It should be noted that the Ω, Γ, and B phases also correspond to PSZ, Ti2O, and the Ti
matrix, respectively.
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Figure A2 shows an example of the FEA result: the distribution of shear stress, τ xy ,

near a double inclusion with thickness t/r of 1.0, which is normalized by the τ∞. The stress
distribution is uniform in the Ω phase, while the stress is distributed non-uniformly in the
Γ and B phases, and the stress concentrates in some regions.

Figure A3 shows the average shear stresses of the Ω and Γ phases as functions of the
thickness t/r. The influence of thickness on average stress and the relationship between
FEA and DIM are almost the same as in the case of the double inclusion in the infinite body
subjected to remote normal stress; as for the DIM calculation, the average stress of each
phase is constant, irrespective of the thickness. As for the FEA calculation, the stress of
each phase decreased with increasing thickness, t/r. Comparing DIM to FEA, although
the stress of the Γ phase obtained from FEA was higher than that from FEA when the
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Γ phase was thin, the stress from FEA asymptotically approached the stress from DIM
with increasing thickness, t/r. In contrast, the stresses of the Ω phase obtained from FEA
and DIM were almost the same when the Γ phase was very thin, whereas the difference
between the stresses obtained by DIM and FEA became large with increasing thickness,
t/r. Figure A4 shows the results of the average shear stresses of the R (=Ω + Γ) phase with
various thicknesses, t/r, calculated via FEA and DIM. The trends of the relationship between
the stress and the thickness obtained via DIM and FEA are almost the same: The stresses
calculated increased with increasing thickness, t/r, and the stresses approached a certain
value. These results related to the double inclusion subjected to shear must be the same as
those subjected to tension, which was mentioned in Section 2.2.
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Figure A4. Average shear stress of R phase (=Ω + Γ) with various thicknesses of the Γ phase. The
microscopic average stress 〈τxy〉R is normalized by the remote stress τ∞.

Hence, it was concluded that DIM can accurately calculate the macroscopic behavior
of a composite with double inclusions, irrespective of loading condition, although the
microscopic stresses cannot be accurately calculated, as they depend on the geometries of
double inclusions.
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