Development of Prediction Models for the Torsion Capacity of Reinforced Concrete Beams Using M5P and Nonlinear Regression Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. M5P Model Tree Techniques
2.1.1. The M5 Tree Algorithm
2.1.2. The M5P Tree Algorithm
2.2. Multiple Nonlinear Regression Method
2.3. Model Inputs
2.4. Database Used
3. Model Result
3.1. M5P and MLNR Derived Models
3.2. Performance Analysis
3.3. Parametric and Sensitivity Analyses
4. Conclusions
- Both the M5P and MLNR models had excellent predictive power.
- With a total RMSE value of 14.663, the M5P model exceeds the MLNR model.
- The torsional resistance of the RC beam can be quickly and reasonably estimated using the suggested M5P model.
- The generated M5P correlation was evaluated against the equations of design building codes and other current models. All of these models could not match the developed M5P’s precision.
- The M5P and MLNR models indicated that the area of concrete had the greatest influence on the prediction of torsional resistance.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bernardo, L.F.A.; Teixeira, M.M.; De Domenico, D.; Gama, J.M.R. Improved Equations for the Torsional Strength of Reinforced Concrete Beams for Codes of Practice Based on the Space Truss Analogy. Materials 2022, 15, 3827. [Google Scholar] [CrossRef]
- Rahal, K.N. Torsional strength of normal and high strength reinforced concrete beams. Eng. Struct. 2013, 56, 2206–2216. [Google Scholar] [CrossRef]
- Teixeira, M.M.; Bernardo, L.F.A. Torsional strength of reinforced concrete beams—Evaluation of some codes of practice. Concrete structures: New trends for eco-efficiency and performance. In Proceedings of the fib Symposium 2021 Held Online, Lisbon, Portugal, 14–16 June 2021; Fédération Internationale du Béton (fib). pp. 2035–2046. [Google Scholar]
- Whittle, R. Failures in Concrete Structures—Case Studies in Reinforced and Prestressed Concrete; FL 33487-2742; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Abingdon, UK, 2013; 140p. [Google Scholar]
- Hsu, T.T.C. Torsion of structural concrete—Behavior of reinforced concrete rectangular members. Spec. Publ. 1968, 18, 261–306. [Google Scholar]
- McMullen, A.E.; Warwaruk, J. Concrete beams in bending, torsion and shear. J. Struct. Div. 1970, 96, 885–903. [Google Scholar] [CrossRef]
- McMullen, A.E.; Rangan, B.V. Pure Torsion in Rectangular Sections—A Re-examination. ACI J. Proc. 1978, 75, 511–519. [Google Scholar]
- Elfgren, L.; Karlsson, I.; Losberg, A. Torsion-bending-shear interaction for concrete beams. J. Struct. Div. 1974, 100, 1657–1676. [Google Scholar] [CrossRef]
- SNiP 52-01-2018; Concrete and Reinforced Concrete Structures. Principal Rules. Ministry of Regional Development of the Russian Federation: Moscow, Russia, 2018.
- ACI Committe 318; Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary (ACI 318R-19). American Concrete Institute: Detroit, MI, USA, 2019.
- CSA Committee A23.3-14; Design of Concrete Structures (CAN/CSA-A23.3-14). Canadian Standards Association: Toronto, ON, Canada, 2014.
- CEB-FIP Model Code 2010; Comité Euro-International du Béton, Secretariat Permanent. Case Postale 88, CH-1015 Lausanne: Lausanne, Switzerland, 2013.
- EN 1992-1-1; Eurocode 2: Design of Concrete Structures—Part 1-1: General Rules and Rules for Buidings. European Committee for Standardization: Brussels, Belgium, 2005; 225p.
- Rausch, E. Berechnung des Eisenbetons gegen Verdrehung (Design of Reinforcerd Concrete in Torsion). Ph.D. Thesis, Technische Hochschule, Berlin, Germany, 1929; 53p. (In German Technische Hochschule). [Google Scholar]
- Cowan, H.J. Elastic Theory for Torsional Strength of Rectangular Reinforced Concrete Beams. Mag. Concr. Res. 1950, 2, 3–8. [Google Scholar] [CrossRef]
- Lampert, P.; Thurlimann, B. Torsionsversuche an Stahlbetonbalken (Torsion Tests of Reinforced Concrete Beams); Bericht, Nr. 6506-2, Institut fur Baustatik, ETH, Zurich: Zürich, Switzerland, 1969; 101p. (In German) [Google Scholar]
- Mitchell, D.; Collins, M.P. Diagonal Compression Field Theory—A Rational Model for Structural Concrete in Pure Torsion. ACI Struct. J. 1974, 71, 396–408. [Google Scholar]
- Leonhardt, F.; Schelling, G. Torsionsversuche an Stahl Betonbalken; Bulletin No. 239; Deutscher Ausschuss fur Stahlbeton: Berlin, Germany, 1974; 122p. (In German) [Google Scholar]
- Jeng, C.-H.; Hsu, T.T.C. A Softened Membrane Model for Torsion in Reinforced Concrete Members. Eng. Struct. 2009, 31, 1944–1954. [Google Scholar] [CrossRef]
- Bernardo, L.F.A.; Andrade, J.M.A. A Unified Softened Truss Model for RC and PC Concrete Beams under Torsion. J. Build. Eng. 2020, 32, 101467. [Google Scholar] [CrossRef]
- Bhatti, M.A.; Almughrabi, A. Refined model to estimate torsional strength of reinforced concrete beams. J. Am. Concr. Inst. 1996, 93, 614–622. [Google Scholar]
- Wang, W.; Hsu, T.T.C. Limit analysis of reinforced concrete beams subjected to pure torsion. J. Struct. Eng. 1997, 123, 86–94. [Google Scholar] [CrossRef]
- Silva, J.R.B.; Horowitz, B.; Bernardo, L.F.A. Efficient procedure to analyze RC beam sections using the softened truss model. ACI Struct. J. 2017, 114, 765–774. [Google Scholar] [CrossRef] [Green Version]
- Greene, G.G.; Belarbi, A. Model for RC members under torsion, bending, and shear. I: Theory. J. Eng. Mech. 2009, 135, 961–969. [Google Scholar]
- Alnauimi, A.S.; Bhatt, P. Direct design of hollow reinforced concrete beams. Part I: Design procedure. Struct. Concr. 2004, 5, 139–146. [Google Scholar] [CrossRef]
- Bairan Garcia, J.M.; Mari Bernat, A.R. Shear-bending-torsion interaction in structural concrete members: A nonlinear coupled sectional approach. Arch. Comput. Methods Eng. 2007, 14, 249–278. [Google Scholar] [CrossRef]
- Bernardo, L.; Taborda, C. Softened Truss Model for Reinforced Concrete Beams under Torsion Combined with Axial Force. Appl. Mech. 2020, 1, 79–96. [Google Scholar] [CrossRef] [Green Version]
- Salem, N.M.; Deifalla, A. Evaluation of the Strength of Slab–Column Connections with FRPs Using Machine Learning Algorithms. Polymers 2022, 14, 1517. [Google Scholar] [CrossRef]
- Ebid, A.; Deifalla, A. Using Artificial Intelligence Techniques to Predict Punching Shear Capacity of Lightweight Concrete Slabs. Materials 2022, 15, 2732. [Google Scholar] [CrossRef]
- Ebid, A.; Deifalla, A. Prediction of Shear Strength of FRP Reinforced Beams with and Without Stirrups Using (GP) Technique. Ain Shams Eng. J. 2021, 12, 2493–2510. [Google Scholar] [CrossRef]
- Shatnawi, A.; Alkassar, H.M.; Al-Abdaly, N.M.; Al-Hamdany, E.A.; Bernardo, L.F.A.; Imran, H. Shear Strength Prediction of Slender Steel Fiber Reinforced Concrete Beams Using a Gradient Boosting Regression Tree Method. Buildings 2022, 12, 550. [Google Scholar] [CrossRef]
- Amani, J.; Moeini, R. Prediction of shear strength of reinforced concrete beams using adaptive neuro-fuzzy inference system and artificial neural network. Sci. Iran. A 2012, 19, 242–248. [Google Scholar] [CrossRef] [Green Version]
- Ilkhani, M.H.; Moradi, E.; Lavasani, M. Calculation of torsion capacity of the reinforced concrete beams using artificial neural network. J. Soft Comput. Civil Eng. 2017, 1, 8–18. [Google Scholar]
- Huang, H.C. Using a hybrid neural network to predict the torsional strength of reinforced concrete beams. Adv. Mater. Res. 2012, 538, 2749–2753. [Google Scholar] [CrossRef]
- Lyu, Z.; Yu, Y.; Samali, B.; Rashidi, M.; Mohammadi, M.; Nguyen, T.N.; Nguyen, A. Back-Propagation Neural Network Optimized by K-Fold Cross-Validation for Prediction of Torsional Strength of Reinforced Concrete Beam. Materials 2022, 15, 1477. [Google Scholar] [CrossRef]
- Cevik, A.; Arslan, M.H.; Köroglu, M.A. Genetic-programming-based modeling of RC beam torsional strength. KSCE J. Civ. Eng. 2010, 14, 371–384. [Google Scholar] [CrossRef]
- Arslan, M.H. Predicting of torsional strength of RC beams by using different artificial neural network algorithms and building codes. Adv. Eng. Softw. 2010, 41, 946–955. [Google Scholar] [CrossRef]
- Deifalla, A.; Salem, N.M. A Machine Learning Model for Torsion Strength of Externally Bonded FRP- Reinforced Concrete Beams. Polymers 2022, 14, 1824. [Google Scholar] [CrossRef]
- Naderpour, H.; Fakharian, P. Predicting the torsional strength of reinforced concrete beams strengthenedwith FRP sheets in terms of artificial neural networks. J. Struct. Constr. Eng. 2018, 5, 20–35. [Google Scholar]
- Amini Pishro, A.; Zhang, Z.; Amini Pishro, M.; Liu, W.; Zhang, L.; Yang, Q. Structural Performance of EB-FRP-Strengthened RC T-Beams Subjected to Combined Torsion and Shear Using ANN. Materials 2022, 15, 4852. [Google Scholar] [CrossRef]
- Deshpande, N.; Londhe, S.; Kulkarni, S. Modeling compressive strength of recycled aggregate concrete by Artificial Neural Network, Model Tree and Non-linear Regression. Int. J. Sustain. Built Environ. 2014, 3, 187–198. [Google Scholar] [CrossRef] [Green Version]
- Zhan, C.; Gan, A.; Hadi, M. Prediction of lane clearance time of freeway incidents using the M5P tree algorithm. IEEE Trans. Intell. Transp. Syst. 2011, 12, 1549–1557. [Google Scholar] [CrossRef]
- Nikoo, M.R.; Karimi, A.; Kerachian, R.; Poorsepahy-Samian, H.; Daneshmand, F. Rules for optimal operation of reservoir-river-groundwater systems considering water quality targets: Application of M5P model. Water Resour. Manag. 2013, 27, 2771–2784. [Google Scholar] [CrossRef]
- Quinlan, J.R. Learning with continuous classes. In Proceedings of the 5th Australian Joint Conference on Artificial Intelligence, Hobart, Tasmania, Australia, 16–18 November 1992; World Scientific: Singapore, 1992; Volume 92, pp. 343–348. [Google Scholar]
- Wang, Y.; Witten, I.H. Induction of Model Trees for Predicting Continuous Classes; Department of Computer Science, The University of Waikato: Hamilton, New Zealand, 1996; 13p. [Google Scholar]
- Deepa, C.; SathiyaKumari, K.; Sudha, V.P. Prediction of the compressive strength of high performance concrete mix using tree based modeling. Int. J. Comp. Appl. 2010, 6, 18–24. [Google Scholar] [CrossRef]
- Sabbaghi, S.; Maleki, R.; Shariaty-Niassar, M.; Zerafat, M.; Nematollahi, M. Modeling of chloride ion separation by nanofiltration using machine learning techniques. Int. J. Nanosci. Nanotechnol. 2012, 8, 185–190. [Google Scholar]
- Koutchoukali, N.-E.; Belarbi, A. Torsion of high-strength reinforced concrete beams and minimum reinforcement requirement. Struct. J. 2001, 98, 462–469. [Google Scholar]
- Chiu, H.-J.; Fang, I.-K.; Young, W.-T.; Shiau, J.-K. Behavior of reinforced concrete beams with minimum torsional reinforcement. Eng. Struct. 2007, 29, 2193–2205. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Kim, S.-W. Torsional strength of RC beams considering tension stiffening effect. J. Struct. Eng. 2010, 136, 1367–1378. [Google Scholar] [CrossRef]
- Ju, H.; Han, S.-J.; Zhang, D.; Kim, J.; Wu, W.; Kim, K.S. Estimation of minimum torsional reinforcement of reinforced concrete and steel fiber-reinforced concrete members. Adv. Mater. Sci. Eng. 2019, 2019, 4595363. [Google Scholar] [CrossRef]
- Frank, I.E.; Todeschini, R. The Data Analysis Handbook; Elsevier: Amsterdam, The Netherlands, 1994. [Google Scholar]
- Asteris, P.G.; Tsaris, A.K.; Cavaleri, L.; Repapis, C.C.; Papalou, A.; Di Trapani, F.; Karypidis, D.F. Prediction of the fundamental period of infilled RC frame structures using artificial neural networks. Comput. Intell. Neurosci. 2016, 2016, 12. [Google Scholar] [CrossRef] [Green Version]
- Grun, B.; Leisch, F. FlexMix Version 2: Finite Mixtures with Concomitant Variables and Varying and Constant Parameters. 2008. Available online: https://www.jstatsoft.org/article/view/v028i04 (accessed on 13 September 2022).
- Smith, G.N. Probability and Statistics in Civil Engineering; Nichols Publishing Company: London, UK, 1986; 244p. [Google Scholar]
- Naser, A.H.; Badr, A.H.; Henedy, S.N.; Ostrowski, K.A.; Imran, H. Application of Multivariate Adaptive Regression Splines (MARS) approach in prediction of compressive strength of eco-friendly concrete. Case Stud. Construct. Mater. 2022, 17, e01262. [Google Scholar] [CrossRef]
Statistics | Subset | Min | Max | Mean | STD |
---|---|---|---|---|---|
(m2) | Training | 0.04 | 0.37 | 0.15 | 0.10 |
Testing | 0.05 | 0.36 | 0.15 | 0.09 | |
(MPa) | Training | 13.1 | 109.8 | 47.1 | 23.50 |
Testing | 17.1 | 96.8 | 45.1 | 20.61 | |
Training | 1.19 × 106 | 531.30 × 106 | 37.27 × 106 | 61.15 × 106 | |
Testing | 1.13 × 106 | 310.78 × 106 | 32.35 × 106 | 57.34 × 106 | |
(kN.m) | Training | 8.99 | 521.33 | 92.48 | 101.01 |
Testing | 12.30 | 467.26 | 90.79 | 95.04 |
Linear Model | Coefficient | |||
---|---|---|---|---|
LM1 | 4.5311 | 0.3108 | 0.7739 | 0.1491 |
LM2 | 1.8252 | 0.2765 | 1.1161 | 0.2883 |
LM3 | 1.9852 | 0.2866 | 1.0774 | 0.272 |
TR(exp) (kN.m) | (MPA) | (m2) | |
---|---|---|---|
37.48 | 28.07 | 0.098 | 12090616 |
Statistics | MAE | RMSE | R | R2 | |
---|---|---|---|---|---|
Training | M5P | 8.279 | 13.288 | 0.991 | 0.983 |
MNLR | 9.435 | 13.908 | 0.989 | 0.979 | |
Testing | M5P | 8.224 | 13.432 | 0.990 | 0.981 |
MNLR | 9.224 | 14.438 | 0.980 | 0.960 | |
Total | M5P | 9.521 | 14.663 | 0.990 | 0.981 |
MNLR | 10.240 | 15.049 | 0.980 | 0.960 |
MAE | RMSE | R2 | COV % | ||
---|---|---|---|---|---|
SNiP18 [9] | 23.1680 | 35.0118 | 0.9332 | 1.3584 | 30.6947 |
ACI 318-19 [10] | 22.3113 | 36.8349 | 0.9619 | 1.2777 | 26.3644 |
MC10 [12] | 19.9876 | 32.7077 | 0.8975 | 1.2183 | 44.7848 |
EC2 [13] | 16.4672 | 24.8102 | 0.9385 | 1.1359 | 23.0495 |
CSA14 [11] | 14.0524 | 29.5598 | 0.9399 | 1.0279 | 19.2282 |
Rahal [2] | 11.1040 | 17.0198 | 0.9705 | 1.0747 | 12.1034 |
MLNR (this study) | 9.2240 | 14.4380 | 0.960 | 1.0544 | 13.9623 |
M5P (this study) | 8.3300 | 13.4321 | 0.9807 | 1.0419 | 11.6419 |
Models | Input Variable | Training Set | Testing Set | ||||
---|---|---|---|---|---|---|---|
MAE | RMSE | R2 | MAE | RMSE | R2 | ||
M5P | 8.279 | 13.288 | 0.983 | 9.224 | 14.438 | 0.980 | |
36.916 | 60.554 | 0.780 | 29.816 | 53.699 | 0.834 | ||
11.004 | 15.688 | 0.980 | 12.054 | 16.699 | 0.970 | ||
20.362 | 38.627 | 0.863 | 20.347 | 34.240 | 0.917 | ||
MLNR | 9.435 | 13.908 | 0.979 | 9.224 | 14.438 | 0.980 | |
46.406 | 72.710 | 0.609 | 51.442 | 78.215 | 0.638 | ||
11.004 | 17.145 | 0.973 | 10.485 | 16.085 | 0.972 | ||
20.362 | 38.627 | 0.863 | 20.347 | 34.240 | 0.917 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Henedy, S.N.; Naser, A.H.; Imran, H.; Bernardo, L.F.A.; Teixeira, M.M.; Al-Khafaji, Z. Development of Prediction Models for the Torsion Capacity of Reinforced Concrete Beams Using M5P and Nonlinear Regression Models. J. Compos. Sci. 2022, 6, 366. https://doi.org/10.3390/jcs6120366
Henedy SN, Naser AH, Imran H, Bernardo LFA, Teixeira MM, Al-Khafaji Z. Development of Prediction Models for the Torsion Capacity of Reinforced Concrete Beams Using M5P and Nonlinear Regression Models. Journal of Composites Science. 2022; 6(12):366. https://doi.org/10.3390/jcs6120366
Chicago/Turabian StyleHenedy, Sadiq N., Ali H. Naser, Hamza Imran, Luís F. A. Bernardo, Mafalda M. Teixeira, and Zainab Al-Khafaji. 2022. "Development of Prediction Models for the Torsion Capacity of Reinforced Concrete Beams Using M5P and Nonlinear Regression Models" Journal of Composites Science 6, no. 12: 366. https://doi.org/10.3390/jcs6120366
APA StyleHenedy, S. N., Naser, A. H., Imran, H., Bernardo, L. F. A., Teixeira, M. M., & Al-Khafaji, Z. (2022). Development of Prediction Models for the Torsion Capacity of Reinforced Concrete Beams Using M5P and Nonlinear Regression Models. Journal of Composites Science, 6(12), 366. https://doi.org/10.3390/jcs6120366