New Method for the Solidification of High-Concentration Radioactive Borate Solution by Cement-Based Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experiments
2.3. Analysis Techniques
3. Results and Discussion
3.1. Hydration Kinetics
3.2. Strength and Durability
3.3. Phase Assemblage
3.4. Transportation and Transformation of Silicon
4. Discussion
5. Conclusions
- A new method for the solidification of high-concentration borate solution by cement-based materials was devised, and it was found that the addition of a sufficient amount of sodium hydroxide and sodium metasilicate can help overcome the retardation effect of borate and restart the cement hydration process.
- The 28-day compressive strength of samples S3–S5 samples was higher than 7 MPa, and the strength loss after freeze–thaw tests was less than 25% percentage. The hydration products of cement paste were portlandite, ettringite, calcium metaborate, and C-(A)-S-H gels. With prolonged curing time, the degree of hydration of the cement pastes increased, and the Al-to-Si ratio and MCL decreased.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, Q.; Wang, J. Cementation of radioactive borate liquid waste produced in pressurized water reactors. Nucl. Eng. Des. 2010, 240, 3660–3664. [Google Scholar] [CrossRef]
- Porhemmat, M.H.; Faghihi, F.; Rabiee, A. Primary loop analysis for a PWR contains Passive Core Cooling System; LOCA and clad rising temperature. Ann. Nucl. Energy 2016, 91, 8–21. [Google Scholar] [CrossRef]
- Singh, V.P.; Badiger, N.M. Shielding efficiency of lead borate and nickel borate glasses for gamma rays and neutrons. Glas. Phys. Chem. 2015, 41, 276–283. [Google Scholar] [CrossRef]
- Piotrowski, T.; Glinicka, J.; Glinicki, M.A.; Prochoń, P. Influence of gadolinium oxide and ulexite on cement hydration and technical properties of mortars for neutron radiation shielding purposes. Constr. Build. Mater. 2019, 195, 583–589. [Google Scholar] [CrossRef]
- Kliem, S.; Rohde, U.; Weiß, F.P. Core response of a PWR to a slug of under-borated water. Nucl. Eng. Des. 2004, 230, 121–132. [Google Scholar] [CrossRef]
- IAEA. Safety of Nuclear Fuel Cycle Facilities: Specific Safety Requirements; IAEA Safety Standards Series No. SSR-4; IAEA: Vienna, Austria, 2017; p. 160. [Google Scholar]
- Bhadouria, V.S.; Akhtar, M.J.; Munshi, P. Low-level radioactive waste management using microwave technology. Prog. Nucl. Energy 2021, 131, 103569. [Google Scholar] [CrossRef]
- Chen, W.; Ling, X.; Li, Q.; Yuan, B.; Li, B.; Ma, H. Experimental evidence on formation of ulexite in sulfoaluminate cement paste mixed with high concentration borate solution and its retarding effects. Constr. Build. Mater. 2019, 215, 777–785. [Google Scholar] [CrossRef]
- Sun, Q.; Li, J.; Wang, J. Effect of borate concentration on solidification of radioactive wastes by different cements. Nucl. Eng. Des. 2011, 241, 4341–4345. [Google Scholar] [CrossRef]
- Csetenyi, L.J.; Glasser, F.P. Borate retardation of cement set and phase relations in the system Na2O-CaO-B2O3-H2O. Adv. Cem. Res. 1995, 7, 13–19. [Google Scholar] [CrossRef]
- Eskander, S.B.; Bayoumi, T.A.; Saleh, H.M. Performance of aged cement-polymer composite immobilizing borate waste simulates during flooding scenarios. J. Nucl. Mater. 2012, 420, 175–181. [Google Scholar] [CrossRef]
- Champenois, J.B.; Mesbah, A.; Coumes, C.C.D.; Renaudin, G.; Leroux, F.; Mercier, C.; Revel, B.; Damidot, D. Crystal structures of Boro-AFm and sBoro-AFt phases. Cem. Concr. Res. 2012, 42, 1362–1370. [Google Scholar] [CrossRef]
- Demirbaş, A.; Karslioǧlu, S. The effect of boric acid sludges containing borogypsum on properties of cement. Cem. Concr. Res. 1995, 25, 1381–1384. [Google Scholar] [CrossRef]
- Champenois, J.B.; Dhoury, M.; Coumes, C.C.D.; Mercier, C.; Revel, B.; le Bescop, P.; Damidot, D. Influence of sodium borate on the early age hydration of calcium sulfoaluminate cement. Cem. Concr. Res. 2015, 70, 83–93. [Google Scholar] [CrossRef]
- Kumar, A.; Sant, G.; Patapy, C.; Gianocca, C.; Scrivener, K.L. The influence of sodium and potassium hydroxide on alite hydration: Experiments and simulations. Cem. Concr. Res. 2012, 42, 1513–1523. [Google Scholar] [CrossRef]
- Li, Q.; Ma, H.; Tang, Y.; Chen, W. Combined effect of NaAlO2 and NaOH on the early age hydration of Portland cement with a high concentration of borate solution. Cem. Concr. Res. 2021, 144, 106430. [Google Scholar] [CrossRef]
- Guerrero, A.; Goi, S. Efficiency of a blast furnace slag cement for immobilizing simulated borate radioactive liquid waste. Waste Manag. 2002, 22, 831–836. [Google Scholar] [CrossRef]
- Casabonne, J.M. Immobilization of borates and phosphates anions with saturated lime solutions. Solid State Ion. 1993, 59, 133–139. [Google Scholar] [CrossRef]
- Coumes, C.C.D.; Dhoury, M.; Champenois, J.B.; Mercier, C.; Damidot, D. Combined effects of lithium and borate ions on the hydration of calcium sulfoaluminate cement. Cem. Concr. Res. 2017, 97, 50–60. [Google Scholar] [CrossRef]
- Li, B.; Ling, X.; Liu, X.; Li, Q.; Chen, W. Hydration of Portland cements in solutions containing high concentration of borate ions: Effects of LiOH. Cem. Concr. Compos. 2019, 102, 94–104. [Google Scholar] [CrossRef]
- Sun, Q.; Li, J.; Wang, J. Solidification of borate radioactive resins using sulfoaluminate cement blending with zeolite. Nucl. Eng. Des. 2011, 241, 5308–5315. [Google Scholar] [CrossRef]
- Coumes, C.C.D.; Courtois, S.; Peysson, S.; Ambroise, J.; Pera, J. Calcium sulfoaluminate cement blended with OPC: A potential binder to encapsulate low-level radioactive slurries of complex chemistry. Cem. Concr. Res. 2009, 39, 740–747. [Google Scholar] [CrossRef]
- Rakhimova, N.R.; Rakhimov, R.Z.; Morozov, V.P.; Potapova, L.I.; Osin, Y.N. Mechanism of solidification of simulated borate liquid wastes with sodium silicate activated slag cements. J. Clean. Prod. 2017, 149, 60–69. [Google Scholar] [CrossRef]
- Palomo, A.; de la Fuente, J.I.L. Alkali-activated cementitous materials: Alternative matrices for the immobilisation of hazardous wastes—Part I. Stabilisation of boron. Cem. Concr. Res. 2003, 33, 281–288. [Google Scholar] [CrossRef]
- GB 14569.1-2011; Performance requirements for low and intermediate level radioactive waste form—Cemented waste form. I. and Q. of the P.R. of C. China, Ministry of Environmental Protection of the People’s Republic of China. General Administration of Quality Supervision: Beijing, China, 2011. (In Chinese)
- Yan, Y.; Yang, S.Y.; Miron, G.D.; Collings, I.E.; L’Hôpital, E.; Skibsted, J.; Winnefeld, F.; Scrivener, K.; Lothenbach, B. Effect of alkali hydroxide on calcium silicate hydrate (C-S-H). Cem. Concr. Res. 2022, 151, 106636. [Google Scholar] [CrossRef]
- Steiner, S.; Lothenbach, B.; Proske, T.; Borgschulte, A.; Winnefeld, F. Effect of relative humidity on the carbonation rate of portlandite, calcium silicate hydrates and ettringite. Cem. Concr. Res. 2020, 135, 106116. [Google Scholar] [CrossRef]
- Breuer, S.; Schwotzer, M.; Speziale, S.; Schilling, F.R. Thermoelastic properties of synthetic single crystal portlandite Ca(OH)2—Temperature-dependent thermal diffusivity with derived thermal conductivity and elastic constants at ambient conditions. Cem. Concr. Res. 2020, 137, 106199. [Google Scholar] [CrossRef]
- Skibsted, J.; Pedersen, M.T.; Holzinger, J. Resolution of the Two Aluminum Sites in Ettringite by 27Al MAS and MQMAS NMR at Very High Magnetic Field (22.3 T). J. Phys. Chem. C. 2017, 121, 4011–4017. [Google Scholar] [CrossRef]
- Han, J.; Wang, K.; Shi, J.; Wang, Y. Effect of tricalcium aluminate and sodium aluminate on thaumasite formation in cement paste. Constr. Build. Mater. 2014, 64, 342–349. [Google Scholar] [CrossRef]
- Kapeluszna, E.; Kotwica, Ł.; Różycka, A.; Gołek, Ł. Incorporation of Al in C-A-S-H gels with various Ca/Si and Al/Si ratio: Microstructural and structural characteristics with DTA/TG, XRD, FTIR and TEM analysis. Constr. Build. Mater. 2017, 155, 643–653. [Google Scholar] [CrossRef]
- Alarcon-Ruiz, L.; Platret, G.; Massieu, E.; Ehrlacher, A. The use of thermal analysis in assessing the effect of temperature on a cement paste. Cem. Concr. Res. 2005, 35, 609–613. [Google Scholar] [CrossRef]
- Zhou, Q.; Glasser, F.P. Thermal stability and decomposition mechanisms of ettringite at <120°C. Cem. Concr. Res. 2001, 31, 1333–1339. [Google Scholar] [CrossRef]
- Zhang, X.; Glasser, F.P.; Scrivener, K.L. Reaction kinetics of dolomite and portlandite. Cem. Concr. Res. 2014, 66, 11–18. [Google Scholar] [CrossRef]
- Sanders, J.P.; Gallagher, P.K. Kinetic analyses using simultaneous TG/DSC measurements: Part I: Decomposition of calcium carbonate in argon. Thermochim. Acta 2002, 388, 115–128. [Google Scholar] [CrossRef]
- L’Hôpital, E.; Lothenbach, B.; Scrivener, K.; Kulik, D.A. Alkali uptake in calcium alumina silicate hydrate (C-A-S-H). Cem. Concr. Res. 2016, 85, 122–136. [Google Scholar] [CrossRef]
- Ke, X.; Bernal, S.A.; Provis, J.L. Controlling the reaction kinetics of sodium carbonate-activated slag cements using calcined layered double hydroxides. Cem. Concr. Res. 2016, 81, 24–37. [Google Scholar] [CrossRef] [Green Version]
- L’Hôpital, E.; Lothenbach, B.; le Saout, G.; Kulik, D.; Scrivener, K. Incorporation of aluminium in calcium-silicate-hydrates. Cem. Concr. Res. 2015, 75, 91–103. [Google Scholar] [CrossRef]
- Myers, R.J.; L’Hôpital, E.; Provis, J.L.; Lothenbach, B. Composition-solubility-structure relationships in calcium (alkali) aluminosilicate hydrate (C-(N,K-)A-S-H). Dalt. Trans. 2015, 44, 13530–13544. [Google Scholar] [CrossRef] [Green Version]
- Garg, N.; Özçelik, V.O.; Skibsted, J.; White, C.E. Nanoscale Ordering and Depolymerization of Calcium Silicate Hydrates in the Presence of Alkalis. J. Phys. Chem. C 2019, 123, 24873–24883. [Google Scholar] [CrossRef]
- Hernández, S.; Guerrero, A.; Goñi, S. Leaching of borate waste cement matrices: Pore solution and solid phase characterization. Adv. Cem. Res. 2000, 12, 1–8. [Google Scholar] [CrossRef]
- Liu, X.; Tan, H.; Ma, B.; Luo, Z.; Lv, Z.; Chen, P.; Zhang, T. Effect of the prepared barium@hydrogel capsule on chloride ion binding of Portland cement paste. Compos. Part B Eng. 2022, 247, 110314. [Google Scholar] [CrossRef]
- Santana-Carrillo, J.L.; Burciaga-Diaz, O.; Escalante-Garcia, J.I. Blended Portland cement with high limestone loads modified with a waste glass based sodium silicate of different ratios SiO2/Na2O. Constr. Build. Mater. 2022, 345, 128411. [Google Scholar] [CrossRef]
Oxide | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | Na2O | P2O5 | LOI |
---|---|---|---|---|---|---|---|---|---|
wt% | 19.35 | 4.57 | 3.75 | 61.21 | 2.65 | 3.64 | 0.20 | 0.13 | 3.09 |
Component | H3BO3 | NaOH | Water |
---|---|---|---|
wt(%) | 22.72 | 3.81 | 73.47 |
OPC (g) | NaOH (g) | Na2SiO3·9H2O (g) | Borate Solution (g) | |
---|---|---|---|---|
S0 | 100 | 5 | 0 | 60 |
S1 | 4.58 | |||
S2 | 9.16 | |||
S3 | 13.75 | |||
S4 | 18.32 | |||
S5 | 22.92 |
Group | 3 d Compressive Strength (MPa) | 28 d Compressive Strength (MPa) | Freeze-Thaw Test (MPa) | The Loss of Strength |
---|---|---|---|---|
S3 S4 S5 | 3.7 6.6 8.6 | 17.6 18.5 11.9 | 15.7 14.3 14.3 | 10.8% 22.7% −20.2% |
Temperature | 30–300 °C | 400–500 °C | 600–800 °C |
---|---|---|---|
Chemical bound water and free water | Portlandite | Calcite | |
S3-3d | 13.60 | 0.62 | 1.90 |
S3-7d | 10.92 | 0.78 | 2.26 |
S3-14d | 15.64 | 0.89 | 2.60 |
S3-28d | 16.74 | 0.85 | 1.94 |
S4-3d | 10.45 | 0.72 | 2.32 |
S4-7d | 9.48 | 0.82 | 2.08 |
S4-14d | 14.70 | 0.90 | 2.38 |
S4-28d | 16.23 | 0.97 | 2.49 |
S5-3d | 19.49 | 0.71 | 1.80 |
S5-7d | 18.52 | 0.82 | 2.05 |
S5-14d | 15.47 | 0.83 | 2.36 |
S5-28d | 16.38 | 0.98 | 2.41 |
Sample | Q0 | Q1 | Q2(1Al) | Q2 | Al/Si Molor Ratio | Hydration Degree | MCL |
---|---|---|---|---|---|---|---|
S4 3 d | 10.89% | 24.23% | 23.37% | 41.51% | 13.11% | 89.11% | 8.32 |
S4 28 d | 10.56% | 35.04% | 13.26% | 41.14% | 7.41% | 89.44% | 5.48 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, H.; Yuan, S.; Geng, H.; Li, Q. New Method for the Solidification of High-Concentration Radioactive Borate Solution by Cement-Based Materials. J. Compos. Sci. 2022, 6, 392. https://doi.org/10.3390/jcs6120392
Ma H, Yuan S, Geng H, Li Q. New Method for the Solidification of High-Concentration Radioactive Borate Solution by Cement-Based Materials. Journal of Composites Science. 2022; 6(12):392. https://doi.org/10.3390/jcs6120392
Chicago/Turabian StyleMa, Haosen, Sensen Yuan, Haining Geng, and Qiu Li. 2022. "New Method for the Solidification of High-Concentration Radioactive Borate Solution by Cement-Based Materials" Journal of Composites Science 6, no. 12: 392. https://doi.org/10.3390/jcs6120392
APA StyleMa, H., Yuan, S., Geng, H., & Li, Q. (2022). New Method for the Solidification of High-Concentration Radioactive Borate Solution by Cement-Based Materials. Journal of Composites Science, 6(12), 392. https://doi.org/10.3390/jcs6120392