Polymer/Fullerene Nanocomposite for Optoelectronics—Moving toward Green Technology
Abstract
:1. Introduction
2. Optoelectronics
3. Polymer/Fullerene Nanocomposite for LEDs: Insertion of Green Technology
4. Polymer/Fullerene Nanocomposite in Solar Cells via the Green Approach
5. Polymer/Fullerene for Optical Sensors: On the Road to Green Nanocomposites
6. Future and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kausar, A. Green nanocomposites for energy storage. J. Compos. Sci. 2021, 5, 202. [Google Scholar] [CrossRef]
- Marchante Rodriguez, V.; Grasso, M.; Zhao, Y.; Liu, H.; Deng, K.; Roberts, A.; Appleby-Thomas, G.J. Surface damage in woven carbon composite panels under orthogonal and inclined high-velocity impacts. J. Compos. Sci. 2022, 6, 282. [Google Scholar] [CrossRef]
- Kausar, A. Progress in green nanocomposites for high-performance applications. Mater. Res. Innov. 2021, 25, 53–65. [Google Scholar] [CrossRef]
- Kausar, A. Carbon nanopeapod encapsulating fullerene and inorganic nanoparticle toward polymeric nanocomposite: Tailored features and promises. Polym. Plast. Technol. Mater. 2022, 61, 1481–1502. [Google Scholar]
- Kausar, A. Polymer/carbon-based quantum dot nanocomposite: Forthcoming materials for technical application. J. Macromol. Sci. Part A 2019, 56, 341–356. [Google Scholar] [CrossRef]
- Kamanina, N.; Toikka, A.; Kvashnin, D. Nanostructuration Impact on the Basic Properties of the Materials: Novel Composite Carbon Nanotubes on a Copper Surface. J. Compos. Sci. 2022, 6, 181. [Google Scholar] [CrossRef]
- Kausar, A. A review of high performance polymer nanocomposites for packaging applications in electronics and food industries. J. Plast. Film Sheeting 2020, 36, 94–112. [Google Scholar] [CrossRef]
- Kausar, A. Polymer/Nanocarbon Nanocomposite-Based Eco-friendly Textiles. In Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications; Springer: Berlin/Heidelberg, Germany, 2021; pp. 2917–2939. [Google Scholar]
- Kausar, A. Conjugated Polymer/Graphene Oxide Nanocomposites—State-of-the-Art. J. Compos. Sci. 2021, 5, 292. [Google Scholar] [CrossRef]
- Kausar, A.; Bocchetta, P. Polymer/Graphene Nanocomposite Membranes: Status and Emerging Prospects. J. Compos. Sci. 2022, 6, 76. [Google Scholar] [CrossRef]
- Zheng, B.; Yue, Y.; Ni, J.; Sun, R.; Min, J.; Wang, J.; Jiang, L.; Huo, L. An end-capped strategy for crystalline polymer donor to improve the photovoltaic performance of non-fullerene solar cells. Sci. China Chem. 2022, 65, 964–972. [Google Scholar] [CrossRef]
- Ilmi, R.; Al-Sharji, H.; Khan, M.S. Recent Progress in Indacenodithiophene-Based Acceptor Materials for Non-Fullerene Organic Solar Cells. Top. Curr. Chem. 2022, 380, 18. [Google Scholar] [CrossRef] [PubMed]
- Vuk, D.; Radovanović-Perić, F.; Mandić, V.; Lovrinčević, V.; Rath, T.; Panžić, I.; Le-Cunff, J. Synthesis and Nanoarchitectonics of Novel Squaraine Derivatives for Organic Photovoltaic Devices. Nanomaterials 2022, 12, 1206. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez Lopez, E.J.; Sarotti, A.M.; Martínez, S.R.; Macor, L.P.; Durantini, J.E.; Renfige, M.; Gervaldo, M.A.; Otero, L.A.; Durantini, A.M.; Durantini, E.N. BOPHY-Fullerene C60 Dyad as a Photosensitizer for Antimicrobial Photodynamic Therapy. Chem. A Eur. J. 2022, 28, e202103884. [Google Scholar]
- Šupová, M.; Martynková, G.S.; Barabaszová, K. Effect of nanofillers dispersion in polymer matrices: A review. Sci. Adv. Mater. 2011, 3, 1–25. [Google Scholar] [CrossRef]
- Jouni, M.; Djurado, D.; Massardier, V.; Boiteux, G. A representative and comprehensive review of the electrical and thermal properties of polymer composites with carbon nanotube and other nanoparticle fillers. Polym. Int. 2017, 66, 1237–1251. [Google Scholar] [CrossRef]
- Forrest, S.R.; Thompson, M.E. Introduction: Organic electronics and optoelectronics. Chem. Rev. 2007, 107, 923–925. [Google Scholar] [CrossRef]
- Sun, Y.; Zeng, W.; Sun, H.; Luo, S.; Chen, D.; Chan, V.; Liao, K. Inorganic/polymer-graphene hybrid gel as versatile electrochemical platform for electrochemical capacitor and biosensor. Carbon 2018, 132, 589–597. [Google Scholar] [CrossRef]
- Bhadra, S.; Rahaman, M.; Khanam, P.N. Electrical and Electronic Application of Polymer–Carbon Composites. In Carbon-Containing Polymer Composites; Springer: Berlin/Heidelberg, Germany, 2019; pp. 397–455. [Google Scholar]
- Yogeswaran, N. Graphene Field Effect Transistor Based Pressure Sensors for Tactile Sensing Applications; University of Glasgow: Glasgow, UK, 2019. [Google Scholar]
- Kholmanov, I.N.; Magnuson, C.W.; Piner, R.; Kim, J.Y.; Aliev, A.E.; Tan, C.; Kim, T.Y.; Zakhidov, A.A.; Sberveglieri, G.; Baughman, R.H. Optical, electrical, and electromechanical properties of hybrid graphene/carbon nanotube films. Adv. Mater. 2015, 27, 3053–3059. [Google Scholar] [CrossRef]
- Das, D.; Rahaman, H. Carbon Nanotube and Graphene Nanoribbon Interconnects; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Biswas, C.; Lee, Y.H. Graphene versus carbon nanotubes in electronic devices. Adv. Funct. Mater. 2011, 21, 3806–3826. [Google Scholar] [CrossRef]
- Yamashita, S. A tutorial on nonlinear photonic applications of carbon nanotube and graphene. J. Light. Technol. 2011, 30, 427–447. [Google Scholar] [CrossRef]
- Song, N.; Jiao, D.; Cui, S.; Hou, X.; Ding, P.; Shi, L. Highly anisotropic thermal conductivity of layer-by-layer assembled nanofibrillated cellulose/graphene nanosheets hybrid films for thermal management. ACS Appl. Mater. Interfaces 2017, 9, 2924–2932. [Google Scholar] [CrossRef] [PubMed]
- Boysen, R.I.; Schwarz, L.J.; Nicolau, D.V.; Hearn, M.T. Molecularly imprinted polymer membranes and thin films for the separation and sensing of biomacromolecules. J. Sep. Sci. 2017, 40, 314–335. [Google Scholar] [CrossRef] [PubMed]
- Müller, C.; Aghamohammadi, M.; Himmelberger, S.; Sonar, P.; Garriga, M.; Salleo, A.; Campoy-Quiles, M. One-step macroscopic alignment of conjugated polymer systems by epitaxial crystallization during spin-coating. Adv. Funct. Mater. 2013, 23, 2368–2377. [Google Scholar] [CrossRef]
- Abdelghani, R.; Hassan, H.S.; Morsi, I.; Kashyout, A. Nano-architecture of highly sensitive SnO2–based gas sensors for acetone and ammonia using molecular imprinting technique. Sens. Actuators B Chem. 2019, 297, 126668. [Google Scholar] [CrossRef]
- Radford, C.L.; Mudiyanselage, P.D.; Stevens, A.L.; Kelly, T.L. Heteroatoms as Rotational Blocking Groups for Non-Fullerene Acceptors in Indoor Organic Solar Cells. ACS Energy Lett. 2022, 7, 1635–1641. [Google Scholar] [CrossRef]
- Tian, C.; Sun, C.; Chen, J.; Song, P.; Hou, E.; Xu, P.; Liang, Y.; Yang, P.; Luo, J.; Xie, L. Fullerene derivative with flexible alkyl chain for efficient tin-based perovskite solar cells. Nanomaterials 2022, 12, 532. [Google Scholar] [CrossRef]
- Krätschmer, W.; Lamb, L.D.; Fostiropoulos, K.H.D.R.; Huffman, D.R. Solid C60: A new form of carbon. Nature 1990, 347, 354–358. [Google Scholar]
- Sachdeva, S.; Singh, D.; Tripathi, S. Optical and electrical properties of fullerene C70 for solar cell applications. Opt. Mater. 2020, 101, 109717. [Google Scholar] [CrossRef]
- Blanter, M.S.; Borisova, P.A.; Brazhkin, V.V.; Lyapin, S.G.; Sviridova, T.A.; Filonenko, V.P.; Kondratev, O.A. The influence of metals on the phase transformations of fullerenes at high pressure and high temperatures. Mater. Lett. 2022, 318, 132199. [Google Scholar] [CrossRef]
- Wang, W.; Hanindita, F.; Hamamoto, Y.; Li, Y.; Ito, S. Fully conjugated azacorannulene dimer as large diaza[80]fullerene fragment. Nat. Commun. 2022, 13, 1498. [Google Scholar] [CrossRef]
- Mojica, M.; Alonso, J.A.; Méndez, F. Synthesis of fullerenes. J. Phys. Org. Chem. 2013, 26, 526–539. [Google Scholar] [CrossRef]
- Kroto, H.W.; Heath, J.R.; O’Brien, S.C.; Curl, R.F.; Smalley, R.E. C60: Buckminsterfullerene. Nature 1985, 318, 162–163. [Google Scholar] [CrossRef]
- Timerkaev, B.; Gevorgyan, R.; Zalyalieva, A.; Timerkaeva, D. Plasma-Chemical Synthesis of Nanodiamonds on the Surface of a Microarc Discharge Cathode. J. Eng. Phys. Thermophys. 2022, 95, 1201–1206. [Google Scholar] [CrossRef]
- Xie, S.-Y.; Huang, R.-B.; Yu, L.-J.; Ding, J.; Zheng, L.-S. Microwave synthesis of fullerenes from chloroform. Appl. Phys. Lett. 1999, 75, 2764–2766. [Google Scholar] [CrossRef]
- Chen, C.; Lou, Z. Formation of C60 by reduction of CO2. J. Supercrit. Fluids 2009, 50, 42–45. [Google Scholar] [CrossRef]
- Scott, L.T. Methods for the chemical synthesis of fullerenes. Angew. Chem. Int. Ed. 2004, 43, 4994–5007. [Google Scholar] [CrossRef]
- Shen, Y.; Nakanishi, T. Fullerene assemblies toward photo-energy conversions. Phys. Chem. Chem. Phys. 2014, 16, 7199–7204. [Google Scholar] [CrossRef]
- Babu, S.S.; Möhwald, H.; Nakanishi, T. Recent progress in morphology control of supramolecular fullerene assemblies and its applications. Chem. Soc. Rev. 2010, 39, 4021–4035. [Google Scholar] [CrossRef]
- Jariwala, D.; Sangwan, V.K.; Lauhon, L.J.; Marks, T.J.; Hersam, M.C. Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem. Soc. Rev. 2013, 42, 2824–2860. [Google Scholar] [CrossRef] [Green Version]
- Yavarinasab, A.; Janfaza, S.; Tasnim, N.; Tahmooressi, H.; Dalili, A.; Hoorfar, M. Graphene/poly (methyl methacrylate) electrochemical impedance-transduced chemiresistor for detection of volatile organic compounds in aqueous medium. Anal. Chim. Acta 2020, 1109, 27–36. [Google Scholar] [CrossRef]
- Qi, F.; Jones, L.O.; Jiang, K.; Jang, S.-H.; Kaminsky, W.; Oh, J.; Zhang, H.; Cai, Z.; Yang, C.; Kohlstedt, K.L. Regiospecific N-alkyl substitution tunes the molecular packing of high-performance non-fullerene acceptors. Mater. Horiz. 2022, 9, 403–410. [Google Scholar] [CrossRef]
- Abbas, F.; Ali, U.; Ahmad, H.M.R.; Tallat, A.; Shehzad, A.; Zeb, Z.; Hussain, I.; Saeed, A.; Tariq, M. Role of Iodo-Substituted Subphthalocyanine (Subpcs) π-conjugated aromatic N-fused di-Iminoisonidole units on the performance of non-fullerene small organic solar cells. Comput. Theor. Chem. 2022, 1207, 113508. [Google Scholar] [CrossRef]
- Heredia, D.A.; Durantini, A.M.; Durantini, J.E.; Durantini, E.N. Fullerene C60 derivatives as antimicrobial photodynamic agents. J. Photochem. Photobiol. C Photochem. Rev. 2022, 51, 100471. [Google Scholar] [CrossRef]
- Baskar, A.V.; Benzigar, M.R.; Talapaneni, S.N.; Singh, G.; Karakoti, A.S.; Yi, J.; Al-Muhtaseb, A.a.H.; Ariga, K.; Ajayan, P.M.; Vinu, A. Self-Assembled Fullerene Nanostructures: Synthesis and Applications. Adv. Funct. Mater. 2022, 32, 2106924. [Google Scholar] [CrossRef]
- Chen, Z.; Duan, C.; Wang, Z.; Yin, Q.; Huang, F.; Cao, Y. Polythiophene derivatives compatible with both fullerene and non-fullerene acceptors for polymer solar cells. J. Mater. Chem. C 2019, 7, 314–323. [Google Scholar]
- Sun, W.; Lu, G.; Ye, C.; Chen, S.; Hou, Y.; Wang, D.; Wang, L.; Oeser, M. The state of the art: Application of green technology in sustainable pavement. Adv. Mater. Sci. Eng. 2018, 2018, 9760464. [Google Scholar] [CrossRef] [Green Version]
- Sukumaran, N.P.; Gopi, S. Overview of biopolymers: Resources, demands, sustainability, and life cycle assessment modeling and simulation. In Biopolymers and Their Industrial Applications; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1–19. [Google Scholar]
- Jebur, Q.M.; Hashim, A.; Habeeb, M.A. Structural, electrical and optical properties for (polyvinyl alcohol–polyethylene oxide–magnesium oxide) nanocomposites for optoelectronics applications. Trans. Electr. Electron. Mater. 2019, 20, 334–343. [Google Scholar] [CrossRef]
- Oh, S.H.; Vak, D.; Na, S.I.; Lee, T.W.; Kim, D.Y. Water-Soluble Polyfluorenes as an Electron Injecting Layer in PLEDs for Extremely High Quantum Efficiency. Adv. Mater. 2008, 20, 1624–1629. [Google Scholar] [CrossRef]
- Sasabe, H.; Kido, J. Development of high performance OLEDs for general lighting. J. Mater. Chem. C 2013, 1, 1699–1707. [Google Scholar] [CrossRef]
- Lan, M.; Zhao, S.; Liu, W.; Lee, C.S.; Zhang, W.; Wang, P. Photosensitizers for photodynamic therapy. Adv. Healthc. Mater. 2019, 8, 1900132. [Google Scholar] [CrossRef]
- Nalwa, K.S.; Cai, Y.; Thoeming, A.L.; Shinar, J.; Shinar, R.; Chaudhary, S. Polythiophene-fullerene based photodetectors: Tuning of spectral response and application in photoluminescence based (bio) chemical sensors. Adv. Mater. 2010, 22, 4157–4161. [Google Scholar] [CrossRef]
- Lee, T.-W.; Lim, K.-G.; Kim, D.-H. Approaches toward efficient and stable electron extraction contact in organic photovoltaic cells: Inspiration from organic light-emitting diodes. Electron. Mater. Lett. 2010, 6, 41–50. [Google Scholar] [CrossRef]
- Hamid, T.; Kielar, M.; Yambem, S.D.; Pandey, A.K. Multifunctional Diode Operation of Tetracene Sensitized Polymer: Fullerene Heterojunctions with Simultaneous Electroluminescence in Visible and NIR Bands. Adv. Electron. Mater. 2021, 7, 2000824. [Google Scholar] [CrossRef]
- Kang, H.; Kim, G.; Hwang, I.-W.; Kim, Y.; Lee, K.C.; Park, S.H.; Lee, K. High-performance polymer tandem devices combining solar cell and light-emitting diode. Sol. Energy Mater. Sol. Cells 2012, 107, 148–153. [Google Scholar] [CrossRef]
- Chen, J.-X.; Wang, H.; Zhang, X.; Xiao, Y.-F.; Wang, K.; Zhou, L.; Shi, Y.-Z.; Yu, J.; Lee, C.-S.; Zhang, X.-H. Using Fullerene Fragments as Acceptors to Construct Thermally Activated Delayed Fluorescence Emitters for High-Efficiency Organic Light-Emitting Diodes. Chem. Eng. J. 2022, 435, 134731. [Google Scholar] [CrossRef]
- Trujillo Herrera, C.; Hong, M.J.; Labram, J.G. Role of the Blend Ratio in Polymer: Fullerene Phototransistors. ACS Appl. Electron. Mater. 2020, 2, 2257–2264. [Google Scholar] [CrossRef]
- Mariotti, N.; Bonomo, M.; Fagiolari, L.; Barbero, N.; Gerbaldi, C.; Bella, F.; Barolo, C. Recent advances in eco-friendly and cost-effective materials towards sustainable dye-sensitized solar cells. Green Chem. 2020, 22, 7168–7218. [Google Scholar] [CrossRef]
- Righetto, M.; Meggiolaro, D.; Rizzo, A.; Sorrentino, R.; He, Z.; Meneghesso, G.; Sum, T.C.; Gatti, T.; Lamberti, F. Coupling halide perovskites with different materials: From doping to nanocomposites, beyond photovoltaics. Prog. Mater. Sci. 2020, 110, 100639. [Google Scholar] [CrossRef]
- Díez-Pascual, A.M.; Rahdar, A. Graphene-Based Polymer Composites for Flexible Electronic Applications. Micromachines 2022, 13, 1123. [Google Scholar] [CrossRef]
- Savenije, T.J.; Ferguson, A.J.; Kopidakis, N.; Rumbles, G. Revealing the dynamics of charge carriers in polymer: Fullerene blends using photoinduced time-resolved microwave conductivity. J. Phys. Chem. C 2013, 117, 24085–24103. [Google Scholar] [CrossRef]
- Chung, I.; Song, J.-H.; Im, J.; Androulakis, J.; Malliakas, C.D.; Li, H.; Freeman, A.J.; Kenney, J.T.; Kanatzidis, M.G. CsSnI3: Semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions. J. Am. Chem. Soc. 2012, 134, 8579–8587. [Google Scholar] [CrossRef]
- Coakley, K.M.; Liu, Y.; Goh, C.; McGehee, M.D. Ordered organic–inorganic bulk heterojunction photovoltaic cells. MRS Bull. 2005, 30, 37–40. [Google Scholar] [CrossRef] [Green Version]
- Kausar, A. Nanodiamond: A multitalented material for cutting edge solar cell application. Mater. Res. Innov. 2018, 22, 302–314. [Google Scholar] [CrossRef]
- Ito, O.; D’Souza, F. Recent advances in photoinduced electron transfer processes of fullerene-based molecular assemblies and nanocomposites. Molecules 2012, 17, 5816–5835. [Google Scholar] [CrossRef] [PubMed]
- Costa, R.D.; Malig, J.; Brenner, W.; Jux, N.; Guldi, D.M. Electron accepting porphycenes on graphene. Adv. Mater. 2013, 25, 2600–2605. [Google Scholar] [CrossRef]
- Zhang, F.; Ceder, M.; Inganäs, O. Enhancing the photovoltage of polymer solar cells by using a modified cathode. Adv. Mater. 2007, 19, 1835–1838. [Google Scholar] [CrossRef]
- Kang, Q.; Liao, Q.; Yang, C.; Yang, Y.; Xu, B.; Hou, J. A new PEDOT derivative for efficient organic solar cell with a fill factor of 0.80. Adv. Energy Mater. 2022, 12, 2103892. [Google Scholar] [CrossRef]
- Chen, L.-M.; Xu, Z.; Hong, Z.; Yang, Y. Interface investigation and engineering–achieving high performance polymer photovoltaic devices. J. Mater. Chem. 2010, 20, 2575–2598. [Google Scholar] [CrossRef]
- Norrman, K.; Madsen, M.V.; Gevorgyan, S.A.; Krebs, F.C. Degradation patterns in water and oxygen of an inverted polymer solar cell. J. Am. Chem. Soc. 2010, 132, 16883–16892. [Google Scholar] [CrossRef]
- Kohlstädt, M.; Grein, M.; Reinecke, P.; Kroyer, T.; Zimmermann, B.; Würfel, U. Inverted ITO-and PEDOT: PSS-free polymer solar cells with high power conversion efficiency. Sol. Energy Mater. Sol. Cells 2013, 117, 98–102. [Google Scholar] [CrossRef]
- Ayzner, A.L.; Tassone, C.J.; Tolbert, S.H.; Schwartz, B.J. Reappraising the need for bulk heterojunctions in polymer− fullerene photovoltaics: The role of carrier transport in all-solution-processed P3HT/PCBM bilayer solar cells. J. Phys. Chem. C 2009, 113, 20050–20060. [Google Scholar] [CrossRef] [Green Version]
- Campoy-Quiles, M.; Ferenczi, T.; Agostinelli, T.; Etchegoin, P.G.; Kim, Y.; Anthopoulos, T.D.; Stavrinou, P.N.; Bradley, D.D.; Nelson, J. Morphology evolution via self-organization and lateral and vertical diffusion in polymer: Fullerene solar cell blends. Nat. Mater. 2008, 7, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Ghosh, A.; Bhandari, S.; Sundaram, S.; Mallick, T.K. Realization of poly (methyl methacrylate)-encapsulated solution-processed carbon-based solar cells: An emerging candidate for buildings’ comfort. Ind. Eng. Chem. Res. 2020, 59, 11063–11071. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.K.H.; Telford, A.M.; Röhr, J.A.; Wyatt, M.F.; Rice, B.; Wu, J.; de Castro Maciel, A.; Tuladhar, S.M.; Speller, E.; McGettrick, J. The role of fullerenes in the environmental stability of polymer: Fullerene solar cells. Energy Environ. Sci. 2018, 11, 417–428. [Google Scholar] [CrossRef]
- Kausar, A. Polymer/fullerene nanocomposite coatings—Front line potential. Emergent Mater. 2022, 5, 29–40. [Google Scholar] [CrossRef]
- Vohra, V.; Razali, N.T.; Wahi, R.; Ganzer, L.; Virgili, T. A comparative study of low-cost coating processes for green & sustainable organic solar cell active layer manufacturing. Opt. Mater. X 2022, 13, 100127. [Google Scholar]
- Amb, C.M.; Craig, M.R.; Koldemir, U.; Subbiah, J.; Choudhury, K.R.; Gevorgyan, S.A.; Jørgensen, M.; Krebs, F.C.; So, F.; Reynolds, J.R. Aesthetically pleasing conjugated polymer: Fullerene blends for blue-green solar cells via roll-to-roll processing. ACS Appl. Mater. Interfaces 2012, 4, 1847–1853. [Google Scholar] [CrossRef]
- Khlyabich, P.P.; Burkhart, B.; Rudenko, A.E.; Thompson, B.C. Optimization and simplification of polymer–fullerene solar cells through polymer and active layer design. Polymer 2013, 54, 5267–5298. [Google Scholar] [CrossRef] [Green Version]
- Pellis, A.; Byrne, F.P.; Sherwood, J.; Vastano, M.; Comerford, J.W.; Farmer, T.J. Safer bio-based solvents to replace toluene and tetrahydrofuran for the biocatalyzed synthesis of polyesters. Green Chem. 2019, 21, 1686–1694. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Jeong, D.; Kim, C.; Lee, C.; Kang, H.; Woo, H.Y.; Kim, B.J. Eco-friendly polymer solar cells: Advances in green-solvent processing and material design. Acs Nano 2020, 14, 14493–14527. [Google Scholar] [CrossRef]
- Kim, J.Y.; Lee, J.-W.; Jung, H.S.; Shin, H.; Park, N.-G. High-efficiency perovskite solar cells. Chem. Rev. 2020, 120, 7867–7918. [Google Scholar] [CrossRef]
- Li, B.; Wu, X.; Zhang, H.; Zhang, S.; Li, Z.; Gao, D.; Zhang, C.; Chen, M.; Xiao, S.; Jen, A.K.Y. Efficient and Stable Tin Perovskite Solar Cells by Pyridine-Functionalized Fullerene with Reduced Interfacial Energy Loss. Adv. Funct. Mater. 2022, 32, 2205870. [Google Scholar] [CrossRef]
- Castro, E.; Murillo, J.; Fernandez-Delgado, O.; Echegoyen, L. Progress in fullerene-based hybrid perovskite solar cells. J. Mater. Chem. C 2018, 6, 2635–2651. [Google Scholar] [CrossRef]
- Roseela, J.A.; Godhavari, T.; Narayanan, R.; Madhuri, P. Design and deployment of IoT based underwater wireless communication system using electronic sensors and materials. Mater. Today Proc. 2020, 45, 6229–6233. [Google Scholar] [CrossRef]
- Wu, M.; Chen, J.; Ma, Y.; Yan, B.; Pan, M.; Peng, Q.; Wang, W.; Han, L.; Liu, J.; Zeng, H. Ultra elastic, stretchable, self-healing conductive hydrogels with tunable optical properties for highly sensitive soft electronic sensors. J. Mater. Chem. A 2020, 8, 24718–24733. [Google Scholar] [CrossRef]
- Eom, T.H.; Kim, T.; Jang, H.W. Hydrogen Sensing of Graphene-based Chemoresistive Gas Sensor Enabled by Surface Decoration. J. Sens. Sci. Technol. 2020, 29, 382–387. [Google Scholar] [CrossRef]
- Mirzaei, A.; Kim, J.-H.; Kim, H.W.; Kim, S.S. Resistive-based gas sensors for detection of benzene, toluene and xylene (BTX) gases: A review. J. Mater. Chem. C 2018, 6, 4342–4370. [Google Scholar] [CrossRef]
- Shi, G.; Meng, Q.; Zhao, Z.; Kuan, H.-C.; Michelmore, A.; Ma, J. Facile fabrication of graphene membranes with readily tunable structures. ACS Appl. Mater. Interfaces 2015, 7, 13745–13757. [Google Scholar] [CrossRef]
- Cahen, D.; Naaman, R.; Vager, Z. The cooperative molecular field effect. Adv. Funct. Mater. 2005, 15, 1571–1578. [Google Scholar] [CrossRef]
- Della Pelle, F.; Angelini, C.; Sergi, M.; Del Carlo, M.; Pepe, A.; Compagnone, D. Nano carbon black-based screen printed sensor for carbofuran, isoprocarb, carbaryl and fenobucarb detection: Application to grain samples. Talanta 2018, 186, 389–396. [Google Scholar] [CrossRef]
- Xiao, Z.; Kong, L.B.; Ruan, S.; Li, X.; Yu, S.; Li, X.; Jiang, Y.; Yao, Z.; Ye, S.; Wang, C. Recent development in nanocarbon materials for gas sensor applications. Sens. Actuators B Chem. 2018, 274, 235–267. [Google Scholar] [CrossRef]
- Colak, O.; Arslan, H.; Zengin, H.; Zengin, G. Amperometric detection of glucose by polyaniline-activated carbon composite carbon paste electrode. Int. J. Electrochem. Sci. 2012, 7, 6988–6997. [Google Scholar]
- Pilan, L.; Raicopol, M. Highly selective and stable glucose biosensors based on polyaniline/carbon nanotubes composites. UPB Sci. Bull. Ser. B 2014, 76, 155–166. [Google Scholar]
- Ruecha, N.; Rodthongkum, N.; Cate, D.M.; Volckens, J.; Chailapakul, O.; Henry, C.S. Sensitive electrochemical sensor using a graphene–polyaniline nanocomposite for simultaneous detection of Zn (II), Cd (II), and Pb (II). Anal. Chim. Acta 2015, 874, 40–48. [Google Scholar] [CrossRef]
- Nasresfahani, S.; Sheikhi, M.; Tohidi, M.; Zarifkar, A. Methane gas sensing properties of Pd-doped SnO2/reduced graphene oxide synthesized by a facile hydrothermal route. Mater. Res. Bull. 2017, 89, 161–169. [Google Scholar] [CrossRef]
- Kooti, M.; Keshtkar, S.; Askarieh, M.; Rashidi, A. Progress toward a novel methane gas sensor based on SnO2 nanorods-nanoporous graphene hybrid. Sens. Actuators B Chem. 2019, 281, 96–106. [Google Scholar] [CrossRef]
- Ruecha, N.; Rangkupan, R.; Rodthongkum, N.; Chailapakul, O. Novel paper-based cholesterol biosensor using graphene/polyvinylpyrrolidone/polyaniline nanocomposite. Biosens. Bioelectron. 2014, 52, 13–19. [Google Scholar] [CrossRef]
- Niu, P.; Fernández-Sánchez, C.; Gich, M.; Navarro-Hernández, C.; Fanjul-Bolado, P.; Roig, A. Screen-printed electrodes made of a bismuth nanoparticle porous carbon nanocomposite applied to the determination of heavy metal ions. Microchim. Acta 2016, 183, 617–623. [Google Scholar] [CrossRef]
- Cinti, S.; Santella, F.; Moscone, D.; Arduini, F. Hg2+ detection using a disposable and miniaturized screen-printed electrode modified with nanocomposite carbon black and gold nanoparticles. Environ. Sci. Pollut. Res. 2016, 23, 8192–8199. [Google Scholar] [CrossRef]
- Clifford, J.P.; Konstantatos, G.; Johnston, K.W.; Hoogland, S.; Levina, L.; Sargent, E.H. Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors. Nat. Nanotechnol. 2009, 4, 40–44. [Google Scholar] [CrossRef]
- Ishimatsu, R.; Naruse, A.; Liu, R.; Nakano, K.; Yahiro, M.; Adachi, C.; Imato, T. An organic thin film photodiode as a portable photodetector for the detection of alkylphenol polyethoxylates by a flow fluorescence-immunoassay on magnetic microbeads in a microchannel. Talanta 2013, 117, 139–145. [Google Scholar] [CrossRef]
- Kraker, E.; Haase, A.; Lamprecht, B.; Jakopic, G.; Konrad, C.; Köstler, S. Integrated organic electronic based optochemical sensors using polarization filters. Appl. Phys. Lett. 2008, 92, 18. [Google Scholar] [CrossRef]
- Amao, Y. Probes and polymers for optical sensing of oxygen. Microchim. Acta 2003, 143, 1–12. [Google Scholar] [CrossRef]
- Augusto, V.; Baleizao, C.; Berberan-Santos, M.N.; Farinha, J.P.S. Oxygen-proof fluorescence temperature sensing with pristine C 70 encapsulated in polymer nanoparticles. J. Mater. Chem. 2010, 20, 1192–1197. [Google Scholar] [CrossRef]
- Yakuphanoglu, F.; Kandaz, M.; Senkal, B.F. Inorganic–organic photodiodes based on polyaniline doped boric acid and polyaniline doped boric acid: Nickel (II) phthalocyanine composite. Sens. Actuators A Phys. 2009, 153, 191–196. [Google Scholar] [CrossRef]
- Amao, Y.; Okura, I. Fullerene C60 immobilized in polymethylmethacrylate film as an optical temperature sensing material. Analusis 2000, 28, 847–849. [Google Scholar] [CrossRef] [Green Version]
- Rather, J.A.; De Wael, K. Fullerene-C60 sensor for ultra-high sensitive detection of bisphenol-A and its treatment by green technology. Sens. Actuators B Chem. 2013, 176, 110–117. [Google Scholar] [CrossRef]
- Zhang, M.; Li, J. Preparation of porphyrin derivatives and C60 supramolecular assemblies as a sensor for detection of dopamine. Dye. Pigment. 2020, 173, 107966. [Google Scholar] [CrossRef]
- Chen, J.; Jia, C.; Wan, Z. Novel hybrid nanocomposite based on poly (3, 4-ethylenedioxythiophene)/multiwalled carbon nanotubes/graphene as electrode material for supercapacitor. Synth. Met. 2014, 189, 69–76. [Google Scholar] [CrossRef]
- Lawal, A.T.; Wallace, G.G. Vapour phase polymerisation of conducting and non-conducting polymers: A review. Talanta 2014, 119, 133–143. [Google Scholar] [CrossRef]
- Moussa, M.; El-Kady, M.F.; Zhao, Z.; Majewski, P.; Ma, J. Recent progress and performance evaluation for polyaniline/graphene nanocomposites as supercapacitor electrodes. Nanotechnology 2016, 27, 442001. [Google Scholar] [CrossRef]
Cell | Voc (mV) | Jsc (mA·cm−2) | FF | PCE (%) |
---|---|---|---|---|
No PMMA/C60 | 500 | 1.54 | 0.56 | 0.56 |
PMMA/C60 | 506 | 3.93 | 0.59 | 1.15 |
Polymer | Nanofiller | Property/Application | Ref. |
---|---|---|---|
Polythiophene | Fullerene | OLED device, photoluminescence, oxygen sensitivity | [56] |
Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate | Fullerene | OLED device, energetic barrier, hole extraction | [57] |
Polycyclopenta-dithiophene-benzothiadiazole | Fullerene | OLED device, energetic barrier, hole extraction | [58] |
Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate | Fullerene | LED, power conversion efficiency 3.1% (AM 1.5 irradiation), luminance of 8000 cd/m2 | [59] |
Poly(3-hexylthiophene-2,5-diyl):[6,6]-penyl-C61-butyric-acid-methyl-ester | Fullerene | Bulk heterojunction solar cell, power conversion efficiency, solar cell efficiency ~3.5%, electron transport, interface formation | [76] |
Poly(3-hexylthiophene):[6,6]-phenyl C61-butyric acid methyl ester | Fullerene | Optical micrographs, PCBM domains <200 | [77] |
Poly(methyl methacrylate) | Fullerene | Photovoltaic device, power conversion efficiency 1.15%, short-circuit current density 3.93 mA/cm2 open-circuit voltage 506 mV, fill factor 0.59 | [78] |
Poly(3-hexylthiophene):(6,6)-phenyl-C61-butyric acid methyl ester | Fullerene | Power conversion efficiency 1.92% | [82] |
Polymer | Fullerene | Power conversion efficiency >17% | [85] |
Poly(methyl methacrylate) | Fullerene | Optical sensor, fluorescence intensity 260–373 K | [111] |
Polymer | Fullerene | Bisphenol A detection limit 3.7 nM | [112] |
Porphyrin–diazocine–porphyrin | Fullerene | Optical sensor, dopamine, detection limit 0.015 μM | [113] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kausar, A.; Ahmad, I.; Maaza, M.; Eisa, M.H.; Bocchetta, P. Polymer/Fullerene Nanocomposite for Optoelectronics—Moving toward Green Technology. J. Compos. Sci. 2022, 6, 393. https://doi.org/10.3390/jcs6120393
Kausar A, Ahmad I, Maaza M, Eisa MH, Bocchetta P. Polymer/Fullerene Nanocomposite for Optoelectronics—Moving toward Green Technology. Journal of Composites Science. 2022; 6(12):393. https://doi.org/10.3390/jcs6120393
Chicago/Turabian StyleKausar, Ayesha, Ishaq Ahmad, Malik Maaza, M. H. Eisa, and Patrizia Bocchetta. 2022. "Polymer/Fullerene Nanocomposite for Optoelectronics—Moving toward Green Technology" Journal of Composites Science 6, no. 12: 393. https://doi.org/10.3390/jcs6120393
APA StyleKausar, A., Ahmad, I., Maaza, M., Eisa, M. H., & Bocchetta, P. (2022). Polymer/Fullerene Nanocomposite for Optoelectronics—Moving toward Green Technology. Journal of Composites Science, 6(12), 393. https://doi.org/10.3390/jcs6120393