The Role of Fibre Length on the Fatigue Failure of Injection-Moulded Composites at Elevated Temperatures under a Range of Axial Loading Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fibre Length Measurement
2.2. Mechanical Testing
2.2.1. Monotonic Loading
2.2.2. Fatigue Loading
2.3. Fracture Surface Analysis
3. Results
3.1. Fibre Length Distributions
3.2. Monotonic Loading Results
3.3. Fatigue Results
3.4. Fractography Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mouti, Z.; Westwood, K.; Long, D.; Njuguna, J. An experimental investigation into localized low-velocity impact loading on glass fibre-reinforced polyamide automotive product. Compos. Struct. 2013, 104, 43–53. [Google Scholar] [CrossRef]
- Sonsino, C.M.; Moosbrugger, E. Fatigue design of highly loaded short-glass-fibre reinforced polyamide parts in engine compartments. Int. J. Fatigue 2008, 30, 1279–1288. [Google Scholar] [CrossRef]
- Bernascinu, A.; Davoli, P.; Armanni, C. Fatigue strength of a clutch pedal mode of reprocessed short glass fibre reinforced polyamide. Int. J. Fatigue 2010, 32, 100–107. [Google Scholar] [CrossRef]
- Mortazavian, S.; Fatemi, A. Fatigue behavior and modeling of short fiber reinforced polymer composites: A literature review. Int. J. Fatigue 2015, 70, 297–321. [Google Scholar] [CrossRef]
- Handa, K.; Kato, A.; Narisawa, I. Fatigue characteristics of glass-fiber-reinforced polyamide. J. Appl. Polym. Sci. 1999, 72, 1783–1793. [Google Scholar] [CrossRef]
- Bellenger, V.; Tcharkhtchi, A.; Castaing, P. Thermal and mechanical fatigue of a PA66/glass fibers composite material. Int. J. Fatigue 2006, 28, 1348–1352. [Google Scholar] [CrossRef]
- Casado, J.A.; Carrascal, I.; Polanco, J.A.; Gutierrez-Solana, F. Fatigue failure of short glass fiber reinforced PA 6.6 structural pieces for railway track fasteners. Eng. Fail. Anal. 2006, 13, 182–197. [Google Scholar] [CrossRef]
- Esmaeillou, B.; Ferreira, P.; Bellenger, V.; Tcharkhtchi, A. Fatigue behavior of polyamide66/glass fiber under various kinds of applied load. Polym. Compos. 2012, 33, 540–547. [Google Scholar] [CrossRef]
- Karsli, N.G.; Aytac, A.; Deniz, V. Effects of initial fiber length and fiber length distribution on the properties of carbon-fiber-reinforced-polypropylene composites. J. Reinf. Plast. Compos. 2012, 31, 1053–1060. [Google Scholar] [CrossRef]
- Yilmazer, U.; Cansever, M. Effects of processing conditions on the fiber length distributions and mechanical properties of glass fiber reinforced nylon-6. Polym. Compos. 2002, 23, 61–71. [Google Scholar] [CrossRef]
- Thomason, J.L. The influence of fibre length and concentration on the properties of glass fibre reinforced polypropylene: 5. Injection moulded long and short fibre PP. Compos. Part A 2002, 33, 1641–1652. [Google Scholar] [CrossRef]
- Karger-Kocsis, J.; Friedrich, K. Fatigue crack propagation in short and long fibre-reinforced injection moulded PA 6.6 composites. Composites 1988, 19, 105–114. [Google Scholar] [CrossRef]
- Meneghetti, G.; Ricotta, M.; Lucchetta, G.; Carmignato, S. An hysteresis energy-based synthesis of fully reversed axial fatigue behaviour of different polypropylene composites. Compos. Part B 2014, 65, 17–25. [Google Scholar] [CrossRef]
- Subramanian, C.; Senthilvelan, S. Effect of fiber length on hysteretic heating of discontinuous fiber-reinforced polypropylene. Int. J. Polym. Mater. 2009, 58, 347–354. [Google Scholar] [CrossRef]
- Sasayama, T.; Okabe, T.; Aoyagi, Y.; Nishikawa, M. Prediction of failure properties of injection-molded short glass fiber-reinforced polyamide 6,6. Compos. Part A 2013, 52, 45–54. [Google Scholar] [CrossRef]
- Kim, E.G.; Park, J.K.; Jo, S.H. A study on fiber orientation during the injection molding of fiber-reinforced polymeric composites (Comparison between image processing results and numerical simulations). J. Mater. Processing Technol. 2001, 111, 225–232. [Google Scholar] [CrossRef]
- Launay, A.; Maitournam, M.H.; Marco, Y.; Raoult, I. Multiaxial fatigue models for short glass fiber reinforced polyamide—Part I: Nonlinear anisotropic constitutive behavior for cyclic response. Int. J. Fatigue 2013, 47, 382–389. [Google Scholar] [CrossRef] [Green Version]
- Launay, A.; Maitournam, M.H.; Marco, Y.; Raoult, I. Multiaxial fatigue models for short glass fiber reinforced polyamide—Part II: Fatigue life estimation. Int. J. Fatigue 2013, 47, 390–406. [Google Scholar] [CrossRef] [Green Version]
- De Monte, M.; Moosbrugger, E.; Quaresimin, M. Influence of temperature and thickness on the off-axis behaviour of short glass fibre reinforced polyamide 6.6—cyclic loading. Compos. Part A 2010, 41, 1368–1379. [Google Scholar] [CrossRef]
- Jain, A.; Van Paepegem, W.; Verpoest, I.; Lomov, S.V. A statistical treatment of the loss of stiffness during cyclic loading for short fiber reinforced injection molded composites. Compos. Part B 2016, 103, 40–50. [Google Scholar] [CrossRef] [Green Version]
- Sabiston, T.; Li, B.; Kang, J.; Wilkinson, D.; Engler-Pinto, C. Accounting for the microstructure in the prediction of the fatigue life of injection moulded composites for automotive applications. Compos. Struct. 2021, 255, 112898. [Google Scholar] [CrossRef]
- Capela, C.; Oliveira, S.E.; Ferreira, J.A.M. Fatigue behavior of short carbon fiber reinforced epoxy composites. Compos. Part B 2019, 164, 191–197. [Google Scholar] [CrossRef]
- Mallick, P.K.; Zhou, Y. Effect of mean stress on the stress-controlled fatigue of a short E-glass fiber reinforced polyamide-6,6. Int. J. Fatigue 2004, 26, 941–946. [Google Scholar] [CrossRef]
- De Monte, M.; Moosbrugger, E.; Jaschek, K.; Quaresimin, M. Multiaxial fatigue of a short glass fibre reinforced polyamide 6.6—Fatigue and fracture behaviour. Int. J. Fatigue 2010, 32, 17–28. [Google Scholar] [CrossRef]
- Horst, J.J.; Spoormaker, J.L. Fatigue fracture mechanisms and fractography of short-glassfibre-reinforced polyamide 6. J. Mater. Sci. 1997, 32, 3641–3651. [Google Scholar] [CrossRef]
- Noda, K.; Takahara, A.; Kajiyama, T. Fatigue failure mechanisms of short glass-fiber reinforced nylon 66 based on nonlinear dynamic viscoelastic measurement. Polymer 2001, 42, 5803–5811. [Google Scholar] [CrossRef]
- Klimkeit, B.; Castagnet, S.; Nadot, Y.; El Habib, A.; Benoit, G.; Bergamo, S.; Dumas, C.; Achard, S. Fatigue damage mechanisms in short fiber reinforced PBT+PET GF30. Mater. Sci. Eng. A 2011, 528, 1577–1588. [Google Scholar] [CrossRef]
- Arif, M.F.; Saintier, N.; Meraghni, F.; Fitoussi, J.; Chemisky, Y.; Robert, G. Multiscale fatigue damage characterization in short glass fiber reinforced polyamide-66. Compos. Part B 2014, 61, 55–65. [Google Scholar] [CrossRef] [Green Version]
- Cosmi, F.; Bernasconi, A. Micro-CT investigation on fatigue damage evolution in short fibre reinforced polymers. Compos. Sci. Technol. 2013, 79, 70–76. [Google Scholar] [CrossRef]
- Belmonte, E.; De Monte, M.; Riedel, T.; Quaresimin, M. Local microstructure and stress distributions at the crack initiation site in a short fiber reinforced polyamide under fatigue loading. Polym. Test. 2016, 54, 250–259. [Google Scholar] [CrossRef]
- Kang, J.; Li, B.; Liang, J.; Engler-Pinto, C. Fatigue testing and fatigue life prediction of injection molded carbon-fibre reinforced plastics for automotive oil-pan application. In Proceedings of the ECCM 18—18th European Conference on Composite Materials, Athens, Greece, 24–28 June 2018. [Google Scholar]
- Sabiston, T.; Li, B.; Kang, J.; Liang, J.; Engler-Pinto, C. Fatigue behaviour of carbon/epoxy Non-Crimp Fabric composites for automotive applications. Procedia Struct. Integr. 2019, 17, 666–673. [Google Scholar] [CrossRef]
- Sabiston, T.; Li, B.; Kang, J.; Liang, J.; Wilkinson, D.; Engler-Pinto, C. Effect of stress ratio on fatigue behaviour of Non-Crimp Fabric composites at room and elevated temperatures. Appl. Compos. Mater. 2020, 27, 575–596. [Google Scholar] [CrossRef]
- Engler-Pinto, C.; Lasecki, J.; Frisch, R.; Allison, J. Statistical approaches applied to very high cycle fatigue. In Proceedings of the Fourth International Conference on very High Cycle Fatigue (VHCF-4), Ann-Arbor, MI, USA, 19–22 August 2007; Volume 2007, pp. 369–376. [Google Scholar]
- BASF. Ultramid (PA) Product Brochure. BASF SE Ludwigshafen; BASF: Florham Park, NJ, USA, 2013. [Google Scholar]
Property | SCF-40 | LCF-40 |
---|---|---|
Elastic Modulus (GPa) | ||
Tensile Strength (Mpa) |
Property | SCF-40 | LCF-40 |
---|---|---|
Elastic Modulus (GPa) | ||
Tensile Strength (MPa) | ||
Compressive Strength (MPa) |
Parameter | SCF-40 | LCF-40 |
---|---|---|
(MPa) | 163.4 | 136.4 |
−0.079 | −0.065 | |
Number of Tests | 24 | 23 |
Parameter | R | SCF-40 | LCF-40 |
---|---|---|---|
(MPa) | −1 | 91.8 | 107.2 |
0.1 | 46.7 | 42 | |
10 | 42.2 | 49.8 | |
−1 | −0.078 | −0.075 | |
0.1 | −0.047 | −0.024 | |
10 | −0.019 | −0.028 | |
Number of Tests | −1 | 14 | 27 |
0.1 | 12 | 12 | |
10 | 12 | 12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabiston, T.; Li, B.; Muhammad, W.; Kang, J.; Engler-Pinto, C. The Role of Fibre Length on the Fatigue Failure of Injection-Moulded Composites at Elevated Temperatures under a Range of Axial Loading Conditions. J. Compos. Sci. 2022, 6, 38. https://doi.org/10.3390/jcs6020038
Sabiston T, Li B, Muhammad W, Kang J, Engler-Pinto C. The Role of Fibre Length on the Fatigue Failure of Injection-Moulded Composites at Elevated Temperatures under a Range of Axial Loading Conditions. Journal of Composites Science. 2022; 6(2):38. https://doi.org/10.3390/jcs6020038
Chicago/Turabian StyleSabiston, Trevor, Bin Li, Waqas Muhammad, Jidong Kang, and Carlos Engler-Pinto. 2022. "The Role of Fibre Length on the Fatigue Failure of Injection-Moulded Composites at Elevated Temperatures under a Range of Axial Loading Conditions" Journal of Composites Science 6, no. 2: 38. https://doi.org/10.3390/jcs6020038
APA StyleSabiston, T., Li, B., Muhammad, W., Kang, J., & Engler-Pinto, C. (2022). The Role of Fibre Length on the Fatigue Failure of Injection-Moulded Composites at Elevated Temperatures under a Range of Axial Loading Conditions. Journal of Composites Science, 6(2), 38. https://doi.org/10.3390/jcs6020038