Waste Glass-Derived Tobermorite Carriers for Ag+ and Zn2+ Ions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Hydrothermal Synthesis and Characterization
2.3. Ag+ and Zn2+ Ion-Exchange
2.4. Preparation of Chitosan-Tobermorite Composite Films
2.5. Kirby-Bauer Inhibition Zone Assay
3. Results
3.1. Characterisation of Waste Container Glass-Derived Tobermorites
3.2. Ion-Exchange Properties of Waste Container Glass-Derived Tobermorites
3.3. Antimicrobial Properties of Chitosan-Tobermorite Composites
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Example of XRD Phase Identification
References
- Jiang, Y.; Ling, T.C.; Mo, K.H.; Shi, C. A critical review of waste glass powder—Multiple roles of utilization in cement-based materials and construction products. J. Environ. Manag. 2019, 242, 440–449. [Google Scholar] [CrossRef] [PubMed]
- Elmes, V.K.; Hurt, A.P.; Coleman, N.J. Mixed-phase ion-exchangers from waste amber container glass. Materials 2021, 14, 4887. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.H.; Elmes, V.E.; Hurt, A.P.; Coleman, N.J. Synthesis of feldspathoids and zeolite K–F from waste amber container glass. Mater. Chem. Phys. 2020, 246, 122805. [Google Scholar] [CrossRef]
- Maisuria, J.; Elmes, V.K.; Hurt, A.P.; Coleman, A.A.; Coleman, N.J. Hydrothermal synthesis of zeolites from green container glass. Physicochem. Probl. Miner. Process. 2020, 56, 784–796. [Google Scholar] [CrossRef]
- Malferrari, D.; Bernini, F.; Di Giuseppe, D.; Scognamiglio, V.; Gualtieri, A.F. Al-substituted tobermorites: An effective cation exchanger synthesized from “end-of-waste” materials. ACS Omega 2022, in press. [CrossRef] [PubMed]
- Majdinasab, A.R.; Yuan, Q. Microwave synthesis of zeolites from waste glass cullet using indirect fusion and direct hydrothermal methods: A comparative study. Ceram. Int. 2019, 45, 2400–2410. [Google Scholar] [CrossRef]
- Majdinasab, A.R.; Manna, P.K.; Wroczynskyj, Y.; van Lierop, J.; Cicek, N.; Tranmer, G.K.; Yuan, Q. Cost-effective zeolite synthesis from waste glass cullet using energy efficient microwave radiation. Mater. Chem. Phys. 2019, 221, 272–287. [Google Scholar] [CrossRef]
- Terzano, R.; D’Alessandro, C.; Spagnuola, M.; Romagnoli, M.; Medici, L. Facile zeolite synthesis from municipal glass and aluminium solid wastes. Clean-Soil Air Water 2015, 43, 133–140. [Google Scholar] [CrossRef]
- Espejel-Ayala, F.; Chora Corella, R.; Morales Pérez, A.; Pérez-Hernández, R.; Ramírez-Zamora, R.M. Carbon dioxide capture utilizing zeolites synthesized with paper sludge and scrap-glass. Waste Manag. Res. 2014, 32, 1219–1226. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Wang, D.; Ye, S. Synthesis of micro-mesoporous glass-analcime composite structure with soda-lime-silica glass as raw material. Funct. Mater. Lett. 2019, 12, 1950021. [Google Scholar] [CrossRef]
- Coleman, N.J. 11 Å tobermorite ion exchanger from recycled container glass. Int. J. Environ. Waste Manag. 2011, 8, 366–382. [Google Scholar] [CrossRef]
- Coleman, N.J.; Li, Q.; Raza, A. Synthesis, structure and performance of calcium silicate ion exchangers from recycled container glass. Physicochem. Probl. Miner. Process. 2014, 50, 5–16. [Google Scholar] [CrossRef]
- Coleman, N.J.; Trice, C.J.; Nicholson, J.W. 11 Å tobermorite from cement bypass dust and waste container glass: A feasibility study. Int. J. Miner. Process. 2009, 93, 73–78. [Google Scholar] [CrossRef]
- Majdinasab, A.; Yuan, Q. Synthesis of Al-substituted 11Å tobermorite using waste glass cullet: A study on the microstructure. Mater. Chem. Phys. 2020, 250, 123069. [Google Scholar] [CrossRef]
- Elmes, V.E.; Mendham, A.P.; Coleman, N.J. A waste-derived lithium metasilicate basic catalyst. In Proceedings of the 2017 2nd International Conference on Materials Science and Nanotechnology (ICMSNT 2017), Auckland, New Zealand, 19–22 April 2017; Volume 109, p. 03004. [Google Scholar] [CrossRef]
- Coleman, N.J.; Hurt, A.P.; Raza, A. Hydrothermal synthesis of lithium silicate from waste glass. A preliminary study. Physicochem. Probl. Miner. Process. 2015, 51, 685–694. [Google Scholar] [CrossRef]
- Medina, T.J.; Arredondo, S.P.; Corral, R.; Jacobo, A.; Zárraga, R.A.; Rosas, C.A.; Cabrera, F.G.; Bernal, J.M. Microstructure and Pb2+ adsorption properties of blast furnace slag and fly ash based geopolymers. Minerals 2020, 10, 808. [Google Scholar] [CrossRef]
- Bobirică, C.; Shim, J.-H.; Park, J.-Y. Leaching behavior of fly ash-waste glass and fly ash-slag-waste glass-based geopolymers. Ceram. Int. 2018, 44, 5886–5893. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, R.; Jiang, X.; Li, W.; Zhu, X.; Huang, B. Effect of particle size and curing temperature on mechanical and microstructural properties of waste glass-slag-based and waste glass-fly ash-based geopolymers. J. Clean. Prod. 2020, 273, 122970. [Google Scholar] [CrossRef]
- Silva, R.V.; de Brito, J.; Lye, C.Q.; Dhir, R.K. The role of glass waste in the production of ceramic-based products and other applications: A review. J. Clean. Prod. 2017, 167, 346–364. [Google Scholar] [CrossRef]
- Ayala Valderrama, D.M.; Gómez Cuaspud, J.A.; Roether, J.A.; Boccaccini, A.R. Development and characterization of glass-ceramics from combinations of slag, fly ash, and glass cullet without adding nucleating agents. Materials 2019, 12, 2032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rambaldi, E. Pathway towards a high recycling content in traditional ceramics. Ceramics 2021, 4, 36. [Google Scholar] [CrossRef]
- Elmes, V.K.; Edgar, B.N.; Mendham, A.P.; Coleman, N.J. Basic metallosilicate catalysts from waste green container glass. Ceram. Int. 2018, 44, 17069–17073. [Google Scholar] [CrossRef]
- Maeda, H.; Tamura, T.; Kasuga, T. Improving the biocompatibility of tobermorite by incorporating calcium phosphate clusters. Biomed. Mater. Eng. 2017, 28, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Hurt, A.P.; Getti, G.; Coleman, N.J. Bioactivity and biocompatibility of a chitosan-tobermorite composite membrane for guided tissue regeneration. Int. J. Biol. Macromol. 2014, 64, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Hurt, A.P.; Kotha, A.K.; Trivedi, V.; Coleman, N.J. Bioactivity, biocompatibility and antimicrobial properties of a chitosan-mineral composite for periodontal tissue regeneration. Polímeros 2015, 25, 2015. [Google Scholar] [CrossRef]
- Okuyama, T.; Maeda, H.; Ishida, E.H. Preparation of porous poly(L-lactic acid)/tobermorite composite membranes via electrospinning and heat treatment. J. Mater. Sci. 2012, 47, 643–648. [Google Scholar] [CrossRef]
- Coleman, N.J.; Bishop, A.H.; Booth, S.E.; Nicholson, J.W. Ag+-and Zn2+-exchange kinetics and antimicrobial properties of 11 Å tobermorites. J. Eur. Ceram. Soc. 2009, 29, 1109–1117. [Google Scholar] [CrossRef]
- Coleman, N.J. Aspects of the in vitro bioactivity and antimicrobial properties of Ag+-and Zn2+-exchanged 11 Å tobermorites. J. Mater. Sci. Mater. Med. 2009, 20, 1347–1355. [Google Scholar] [CrossRef]
- Kaali, P.; Pérez-Madrigal, M.M.; Strömberg, E.; Aune, R.E.; Czél, G.; Karlsson, S. The influence of Ag+, Zn2+ and Cu2+ exchanged zeolite on antimicrobial and long term in vitro stability of medical grade polyether polyurethane. EXPRESS Polym. Lett. 2011, 5, 1028–1040. [Google Scholar] [CrossRef]
- Torres-Giner, S.; Ana Torres, A.; Ferrándiz, M.; Fombuena, V.; Balart, R. Antimicrobial activity of metal cation-exchanged zeolites and their evaluation on injection-molded pieces of bio-based high-density polyethylene. J. Food Saf. 2017, 37, e12348. [Google Scholar] [CrossRef] [Green Version]
- Predoi, D.; Iconaru, S.L.; Predoi, M.V. Fabrication of silver- and zinc-doped hydroxyapatite coatings for enhancing antimicrobial effect. Coatings 2020, 10, 905. [Google Scholar] [CrossRef]
- Wattanawong, N.; Chatchaipaiboon, K.; Sreekirin, N.; Aht-Ong, D. Migration, physical and antibacterial properties of silver zeolite/poly(butylene succinate) composite films for food packaging applications. J. Reinf. Plast. Comp. 2020, 39, 95–110. [Google Scholar] [CrossRef]
- Quintero-Quiroz, C.; Botero, L.E.; Zárate-Triviño, D.; Acevedo-Yepes, N.; Saldarriaga Escobar, J.; Pérez, V.Z.; Javier Cruz Riano, L. Synthesis and characterization of a silver nanoparticle-containing polymer composite with antimicrobial abilities for application in prosthetic and orthotic devices. Biomater. Res. 2020, 24, 13. [Google Scholar] [CrossRef]
- El Batal, H.A.; Hassan, M.Y.; Fanny, M.A.; Ibrahim, M.M. Optical and FT infrared absorption spectra of soda lime silicate glasses containing nano Fe2O3 and effects of gamma irradiation. Silicon 2017, 9, 511–517. [Google Scholar] [CrossRef]
- Mostafa, N.Y.; Shaltout, A.A.; Omar, H.; Abo-El-Enein, S.A. Hydrothermal synthesis and characterization of aluminium and sulfate substituted 1.1 nm tobermorites. J. Alloys Compd. 2009, 467, 332–337. [Google Scholar] [CrossRef]
- Houston, J.R.; Maxwell, R.S.; Carroll, S.A. Transformation of meta-stable calcium silicate hydrates to tobermorite: Reaction kinetics and molecular structure from XRD and NMR spectroscopy. Geochem. Trans. 2009, 10, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conradt, R. Prospects and physical limits of processes and technologies in glass melting. J. Asian Ceram. Soc. 2019, 7, 377–396. [Google Scholar] [CrossRef] [Green Version]
- Grbeš, A. A life cycle assessment of silica sand: Comparing the beneficiation processes. Sustainability 2016, 8, 11. [Google Scholar] [CrossRef] [Green Version]
- Mishra, A. Impact of silica mining on environment. J. Geogr. Reg. Plann. 2015, 8, 150–156. [Google Scholar] [CrossRef] [Green Version]
- Yousefpour, M. Modelling of adsorption of zinc and silver ions on analcime and modified analcime zeolites using central composite design. Iran. J. Chem. Chem. Eng. 2017, 36, 81–90. [Google Scholar] [CrossRef]
- Benaliouche, F.; Hidous, N.; Guerza, M.; Zouad, Y.; Boucheffa, Y. Characterization and water adsorption properties of Ag- and Zn-exchanged A zeolites. Microporous Mesoporous Mater. 2015, 209, 184–188. [Google Scholar] [CrossRef]
- Demirci, S.; Ustaoğlu, Z.; Yılmazer, G.A.; Sahin, F.; Baç, N. Antimicrobial properties of zeolite-X and zeolite-A ion-exchanged with silver, copper, and zinc against a broad range of microorganisms. Appl. Biochem. Biotechnol. 2014, 172, 1652–1662. [Google Scholar] [CrossRef]
- Peixoto, P.; Guedes, J.F.; Rombi, E.; Fonseca, A.M.; Aguiar, C.A.; Neves, I.C. Metal ion–zeolite materials against resistant bacteria, MRSA. Ind. Eng. Chem. Res. 2021, 60, 12883–12892. [Google Scholar] [CrossRef]
- Abu Suleiman, L.; Haddadin, R.; Hodali, H.A. Antimicrobial activity of metal-loaded zeolites against “S. aureus” and “E. coli”. Jordan J. Chem. 2019, 14, 61–68. [Google Scholar]
- Pérez-Carvajal, J.; Lalueza, P.; Casado, C.; Téllez, C.; Coronas, J. Layered titanosilicates JDF-L1 and AM-4 for biocide applications. Appl. Clay Sci. 2012, 56, 30–35. [Google Scholar] [CrossRef]
- Top, A.; Ülkü, S. Silver, zinc, and copper exchange in a Na-clinoptilolite and resulting effect on antibacterial activity. Appl. Clay Sci. 2004, 27, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Özdemir, G.; Hoşgör-Limoncu, M.; Yapar, S. The antibacterial effect of heavy metal and cetylpridinium-exchanged montmorillonites. Appl. Clay Sci. 2010, 48, 319–323. [Google Scholar] [CrossRef]
- Evans, A.; Kavanagh, K.A. Evaluation of metal-based antimicrobial compounds for the treatment of bacterial pathogens. J. Med. Microbiol. 2021, 70, 001363. [Google Scholar] [CrossRef]
- Frickmann, H.; Hahn, A.; Berlec, S.; Ulrich, J.; Jansson, M.; Schwarz, N.G.; Warnke, P.; Podbielski, A. On the etiological relevance ofEscherichia coli and Staphylococcus aureus in superficial and deep infections—A hypothesis-forming, retrospective assessment. Eur. J. Microbiol. Immunol. 2019, 9, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Kramer, A.; Schwebke, I.; Kampf, G. How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect. Dis. 2006, 6, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Souza, V.G.L.; Pires, J.R.A.; Rodrigues, C.; Coelhoso, I.M.; Fernando, A.L. Chitosan composites in packaging industry—Current trends and future challenges. Polymers 2020, 12, 417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Oxide Component | Quantity in Green Cullet (wt%) | Quantity in Amber Cullet (wt%) |
---|---|---|
SiO2 | 72.15 | 70.82 |
Na2O | 13.21 | 13.75 |
CaO | 10.48 | 10.03 |
Al2O3 | 1.48 | 2.21 |
MgO | 0.94 | 1.42 |
K2O | 0.59 | 0.87 |
Fe2O3 | 0.46 | 0.43 |
SO3 | 0.28 | 0.31 |
Cr2O3 | 0.27 | 0.04 |
Sample | Q1 | Q2(1Al) | Q2 | Q3(1Al) | Q4 | Tobermorite-Content | MCL |
---|---|---|---|---|---|---|---|
TG4 | 20.17 | 18.09 | 31.46 | 8.29 | 21.98 | 78 ± 4% | 17.1 |
TA4 | 21.20 | 17.21 | 31.12 | 10.29 | 20.17 | 80 ± 4% | 17.0 |
Mineral Phase | Ag+-Uptake(mmol g−1) | Zn2+-Uptake(mmol g−1) |
---|---|---|
Glass-derived tobermorite (this study) | 0.57–0.59 | 0.53–0.55 |
Sodium metasilicate-derived tobermorite [28] | 0.96 | 2.26 |
Synthetic analcime [41] | 0.30 | 0.028 |
Zeolite A [42] | 3.55 | 1.52 |
Zeolite A [30] | 1.22 | 2.81 |
Zeolite X [43] | 3.95 | 2.77 |
Zeolite Y [44] | 0.046–0.73 | 0.83 |
Zeolite Y [45] | 3.13 | 1.19 |
Zeolite ZSM-5 [45] | 1.11 | 0.32 |
Titanosilicate JDF-L1 [46] | 0.82 | 0.16 |
Titanosilicate AM-4 [46] | 1.33 | 0.57 |
Natural chabazite [31] | 0.12 | 0.018 |
Clinoptilolite [47] | 1.23 | 0.22 |
Montmorillonite [48] | 0.24 | 0.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, H.; Li, Q.; Coleman, N.J. Waste Glass-Derived Tobermorite Carriers for Ag+ and Zn2+ Ions. J. Compos. Sci. 2022, 6, 52. https://doi.org/10.3390/jcs6020052
Rahman H, Li Q, Coleman NJ. Waste Glass-Derived Tobermorite Carriers for Ag+ and Zn2+ Ions. Journal of Composites Science. 2022; 6(2):52. https://doi.org/10.3390/jcs6020052
Chicago/Turabian StyleRahman, Habib, Qiu Li, and Nichola J. Coleman. 2022. "Waste Glass-Derived Tobermorite Carriers for Ag+ and Zn2+ Ions" Journal of Composites Science 6, no. 2: 52. https://doi.org/10.3390/jcs6020052
APA StyleRahman, H., Li, Q., & Coleman, N. J. (2022). Waste Glass-Derived Tobermorite Carriers for Ag+ and Zn2+ Ions. Journal of Composites Science, 6(2), 52. https://doi.org/10.3390/jcs6020052