
����������
�������

Citation: El-Abbassi, F.E.; Assarar,

M.; Sakami, S.; Kebir, H.; Ayad, R.

The Effect of Micromechanics Models:

2D and 3D Numerical Modeling for

Predicting the Mechanical Properties

of PP/Alfa Short Fiber Composites. J.

Compos. Sci. 2022, 6, 66. https://

doi.org/10.3390/jcs6030066

Academic Editor: Francesco

Tornabene

Received: 31 December 2021

Accepted: 18 February 2022

Published: 23 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Communication

The Effect of Micromechanics Models: 2D and 3D Numerical
Modeling for Predicting the Mechanical Properties of PP/Alfa
Short Fiber Composites
Fatima Ezzahra El-Abbassi 1,*, Mustapha Assarar 2, Siham Sakami 1, Hocine Kebir 3 and Rezak Ayad 2

1 Faculty of Sciences and Techniques, University of Cadi Ayyad, L3G, Marrakech 40000, Morocco;
s.sakami@uca.ma

2 Institute of Thermics, Mechanics and Materials (ITheMM EA 7548), University of Reims Champagne-Ardenne,
F-51097 Reims, France; mustapha.assarar@univ-reims.fr (M.A.); rezak.ayad@univ-reims.fr (R.A.)

3 Roberval Laboratory, University of Technology of Compiègne, F-60205 Compiègne, France;
hocine.kebir@utc.fr

* Correspondence: fz.elabbassi@uca.ma

Abstract: In the present work, we propose to confront two modeling techniques for predicting the
macroscopic properties of short alfa fiber-reinforced polypropylene composites. The first modeling
was a micromechanical analysis using the Mori-Tanaka, Self-consistent, Diluted, Voigt, Reuss, and
Neerfeld-Hill models. The second modeling was digital, using a specific finite element technique
called the Projected Fiber (PF) approach. In the framework of this study, both 2D and 3D finite
element analyses based on the PF approach were used. First, we proposed an inverse approach using
these analytical and finite element models to predict the Young’s modulus of alfa fiber. Then, we
compared the obtained results with the experiment values available in the literature. This comparison
showed that the micromechanical models underestimated the alfa fiber’s Young’s modulus, while
the finite element approach, PF, allowed for good framing of the experimental values. Moreover, we
investigated the effect of fiber content on the predicted elastic properties of a polypropylene (PP)
matrix reinforced with randomly distributed short alfa fibers. We noticed that the Diluted model
was more accurate than the Mori-Tanaka and Self-consistent methods. As for the PF approach, its
estimations were close to the experimental values. For example, the Young’s modulus for the PP/alfa
with a 30 wt% of fiber content was underestimated with an error of 4.3%. It is shown that the 2D PF
approach can provide calculated results with sufficient prediction accuracy.

Keywords: short fiber composites; elastic properties; finite element analysis (FEA); analytical
homogenization models

1. Introduction

For composites with randomly dispersed short fibers, the well-known micromechani-
cal homogenization models in the literature are analytical. Finite element homogenization
methods, made accessible by the increasing performance of computing power, were gen-
erally reserved for composites reinforced with well-oriented fibers [1]. Finite element
models are efficient and versatile for the inspection of complex structural behavior. Thereby,
many researchers have worked recently on developing finite element models for short fiber
composites [1–4]. Indeed, in 2021, Narendra et al. [3] used the finite element method with a
micromechanics method to study the influence of fiber geometry and volume fraction on
the elastic property of a studied composite. Their results showed that all the used methods
behaved in a good agreement with up to a 50% volume fraction. In 2020, Hong-Bo, and
Zheng-Ming Huang [5] investigated the matrix plasticity-induced nonlinear behavior of
short fiber-reinforced composites based on the extended bridging model. In 2014, Kebir
and Ayad [2] developed a specific finite element approach called Projected Fiber (PF). The
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matrix was modeled using a triangular finite element with a three-node CST (constant strain
triangle) and the fiber with a two-node truss element. Their model incorporates the random
distribution of short fiber reinforcements in the composite. Then, in 2012, Cunha et al. [6]
also proposed a finite element model to simulate the behavior of cracks in a composite
reinforced with short steel fibers. In a similar work published in 2009, Pan and Pelegri [7]
presented analytical and numerical finite element tools for the analysis and design of
composite materials with randomly dispersed short fibers. In 2007, Kari et al. [1] estimated,
using a finite element simulation within ANSYS code, the effective elastic properties of
two composite materials: the first with short fibers randomly dispersed and the second
with short fibers transversely dispersed. Their numerical predictions were in between
the Hashin–Strikman bounds and close to the results of self-consistent approximation.
Finally, in 2005, Doghri and Tinel [8] proposed a two-step incremental formulation based
on the Mori-Tanaka homogenization to predict the elastic–plastic behavior of multiphase
elasto–plastic composites reinforced with non-spherical and non-aligned short fibers un-
der cyclic and non-proportional loadings. Their numerical simulations showed that the
proposed mean-field two-step homogenization approach was able to predict the effective
properties of elasto–plastic matrix composites reinforced with distributed-orientation fibers
with good accuracy.

On the other hand, in engineering practice, there are many situations in which we
have composite material, but we do not have information about the properties of each
phase component. Moreover, the properties of composite constituents may change during
the material processing [9]. Therefore, to measure the local material properties, advanced
experimental techniques, for example, nanoindentation [10] or micropillar compression [11],
have been developed. Another interesting way to solve this problem is by combining an
optimization method with a micromechanical model to create an inverse identification
approach. This issue has been raised by several researchers who proposed different inverse
identification approaches either for isotropic or anisotropic materials [12–14]. Witold
Ogierman [15] used an evolutionary algorithm with a micromechanical model to compute
the elastic constants of individual material phases on the basis of known properties of
composite materials. He studied two composites: one reinforced with short cylindrical
fibers and the other reinforced with cubic particles. He found that his inverse identification
was successful only when the properties of the composite materials with at least two
different volume fractions of the reinforcement were known, otherwise the identification
was ambiguous. In a similar work, Burczynski and Kus [16] analyzed composites reinforced
with continuous fibers. They combined finite element analysis based homogenization with
an evolutionary algorithm to conduct multiscale modeling. Therefore, although it is a
widely used approach, to our knowledge, there have been no attempts to use an inverse
identification method to estimate the properties of alfa fibers.

In this work, we propose to identify the effective elastic properties of a thermoplastic
matrix (i.e., polypropylene (PP)) reinforced with short alfa fibers using analytical homoge-
nization models and by finite element analysis. To this end, we used the projected fiber
approach as well as the most well-known micromechanical models in the literature, namely,
Voigt and Reuss, Neerfeld-Hill, Mori-Tanaka, the diluted model, and the self-consistent,
which we implemented using MATLAB software. The Young’s modulus of the alfa fiber
was determined using a reverse approach from these models. Then, we studied the effect
of the volume fraction on the Young’s modulus for the studied composites by considering
the developed analytical and numerical models

2. Materials and Methods
2.1. Material and Manufacturing Process

In this work, our choice fell on a known polymer, polypropylene. It is a thermoplastic
and semi-crystalline, and it is widely used in the industry. The Young’s modulus and
Poisson ratio of the used polypropylene were 1.75 GPa and 0.35, respectively. No coupling
agent was used to strengthen the fiber–matrix interface. The used PP granules were ex-
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truded by the APM company. As for the fiber, we used the alfa plant from the northeastern
region of Morocco, more exactly around the city of Oujda. First, the received leaves were
dried in the sun for three days. Then, they were mechanically crushed and, finally, sieved.
The obtained fibers had a diameter of <800 µm and a length of ~2 cm. The fibers were
soaked in salted water (35 g/L) at a temperature of 60 ◦C for 24 h. This washing with
saltwater removed dirt, dust, and some of the waxes. It thus made the fibers more open to
the next treatment [17]. The second step was to wash the fibers with distilled water and
then put them in a 10% NaOH solution at room temperature for 24 h. Finally, the fibers
were washed several times with distilled water and dried in an oven for 12 h at 105 ◦C. The
studied composites had different weights of treated alfa fibers (10%, 20%, 30%, and 40 wt%).
We used a single screw extruder operating at a speed of 150 revolutions per minute to
produce the compounds. The six heating zones of the extruder cylinder were, respectively,
brought to temperatures equal to 180, 185, 190, 190, 190, and 190 ◦C. The wire coming out
of the extruder, once cooled, was crushed to obtain compounds 3–7 mm in length. The
compounds were then dried in an oven for 12 h at a temperature of 105 ◦C. Finally, the
specimens were obtained by injection as indicated in Figure 1.
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2.2. Tensile Tests

The samples of the studied materials were subjected to tensile tests following the
standard ASTM D638-10 with a cross-head speed of 2 mm/min. This norm suggests
dumbbell-shaped samples with a central length, width, and thickness of 105, 10, and 4 mm,
respectively. A clip-on extensometer with a 50 mm gauge length was used to measure
strain. For each set of samples, all the results were taken as the average value and the
standard deviation of five tested samples.

2.3. Micromechanical Models

In this work, we used some of the most well-known micromechanical models in the
literature. In each model, the stiffness tensor of the composite was calculated through the
following equations:

Voigt : Cc = Vf C f + V0C0 (1)

Reuss : C−1
c = Vf C−1

f + V0C−1
0 (2)

Neerfeld-Hill : Cc =
(
Cc,Reuss + Cc, Voigt

)
× 1/2 (3)

Self-consistent : Cc = C0 + ∑n
ph=1 fph

(
Cph − C0

)[
I + SphC−1

c

(
Cph − C0

)]−1
(4)

Mori-Tanaka : Cc = C0

{
I +

(
∑n

ph=1 fphLph

) [
I + ∑n

ph=1 fph

(
Sph − I

)
Lph

]−1
}−1

(5)

Diluted model : Cc = C0 + ∑n
ph=1 fph

(
Cph − C0

)
:
[

I + Sph : C−1
0 :

(
Cph − C0

)]−1
(6)

where C is the stiffness tensor (0 for matrix, f for fiber, ph for inclusion, and c for composite),
V is the volume fraction (m for matrix and f for fiber), PFh is the inclusion’s volume
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fraction, and Sph is the inclusion’s Eshelby tensor. The random distribution of the fibers is
represented by the n number of phases. Lph is the pseudo-tensor of localization defined by:

Lph = −
[(

Cph − C0

)
Sph + C0

]−1(
Cph − C0

)
(7)

These homogenization approaches were based on the definition of a material repre-
sentative volume element (RVE) and considered a linear elastic behavior for the matrix and
fibers. Moreover, the fiber/matrix interface was considered perfect and that there was no
inter-facial decohesion. The orientation was discretized into N families. Each of these N
families of reinforcement had a particular orientation and were therefore considered as N
different phases.

2.4. Finite Element Modeling: The Projected Fiber (PF) Approach
2.4.1. The 2D Approach

In 2014, Kebir and Ayad [2] developed an original approach: Projected Fiber. This ap-
proach is based on a special finite element procedure associated with a random distribution
of fibers to calculate the elastic properties of composites reinforced with short natural fibers.
It considers the fiber’s properties (i.e., geometry after injection, orientation, fiber content,
Young’s modulus, Poisson’s ratio) and the mechanical properties of the matrix (i.e., Young’s
modulus and Poisson’s ratio). In a 2D small fiber composite domain, the stiffness matrix of
the reinforcement, represented by a unidimensional 2-node truss finite element, is projected
on that of a plane 3-node triangular finite element associated with the resin space (Figure 2).
The random aspect of the small fibers is represented by the corresponding positions of
the truss finite elements. A local condensation of the fibers’ DOF (degrees of freedom)
was considered, decreasing dimensions of the final stiffness matrix of the composite and
reducing computational times.
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2.4.2. The 3D Approach

In the 3D approach, the fiber was modeled as a truss element a–b, with a constant
cross-section, described within a local coordinate system x (Figure 3a). Lf represents the
microscopic fiber length associated with its diameter, Df (aspect ratio Lf/Df). We introduced
them as morphological data as well as the fiber’s Young’s modulus, Ef, within the element
formulation. A classical linear interpolation of the displacement field, u, is proposed:

u = N1 ua + N2 ub; Lf (N1,N2) = (1 − x,x) (8)

where ua and ub are the nodal displacements of fiber a–b, described within the local coordi-
nate system (x). In a 3D coordinate system (i.e., X, Y, and Z), the displacements used for
the simulation are U, V, and W. Associated with the fiber nodes a and b, we defined them
as follows:

(U V W)t = N1 (Ua Va Wa)t + N2 (Ub Vb Wb)t (9)
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the PF approach was extended to three-dimensional problems using a classical tetrahedron
4-node element to model the matrix space (Figure 3b). As for the random aspect of the
small fibers, it was represented by the same principal as in the 2D approach described in
the work of Kebir and Ayad [2].
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In the Projected Fiber approach, the fiber was modeled with a linear 2-node element
(1 degree of freedom/node) merged, inside a 3-node constant strain triangle (2 DOF/node)
for the 2D approach, while for the 3D projected fiber approach, it was merged inside a
4-node tetrahedron element node (3 DOF/node). Then, instead of using the Eshelby tensors
or Euler angles to obtain the global composite rigidity, the PF approach considered the nodal
degrees of freedom vector of the fiber as a projection on that of the resin element [2]. The
random aspect of the short fibers was represented by considering 91 families. Therefore,
the summation over the n heterogeneities became a summation over the n families of
orientations. As the orientation was completely random, all fiber volume fractions were
identical and equal to the ratio of the total volume fraction to the number of families.
Both the 2D and 3D approaches use the same principle for the projection and random
distribution of the fibers. The stiffness of the composite is written as:

Cc = Cc + ∑n
ph=1

A f

l f

(
E f + Em

)
αph (10)

where C is the stiffness tensor (m for matrix, f for fiber, ph for families, and c for composite);
Af , and lf are, respectively, the cross-sectional area and the length of the fiber element. For
a family of fibers oriented at an angle α, the expression of the orientation tensor, αph, is
as follows:

αph =


cos(α)2 cos(α) sin(α) − cos(α)2 − cos(α) sin(α)

cos(α) sin(α) sin(α)2 − cos(α) sin(α) − sin(α)2

− cos(α)2 − cos(α) sin(α) cos(α)2 cos(α) sin(α)
cos(α) sin(α) − sin(α)2 cos(α) sin(α) sin(α)2

 (11)

In order to compare the results obtained by the PF approach to the experimental values
of the tensile test, we chose the boundary conditions of the RVE so as to simulate a tensile
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test. To this purpose, we applied on one of the ends of the RVE a loading along the axis (ox)
and on the opposite side a simple support in order to prevent any translation along the
x-axis and the y-axis. A mobile support was also applied on the lower side parallel to the
x-axis (Figure 4) to prevent movements along the y-axis.
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3. Results and Discussion
3.1. Estimation of the Alfa Fiber’s Young’s Modulus

It is often difficult to measure experimentally the Young’s modulus of a short plant
fiber. Indeed, it must have a length over 20 mm to leave at least 10 mm free to glue
it on the paper support. The glue can also sometimes coat the effective length of the
fiber and distort the test results [18]. On the other hand, plant fibers have a lumen and
exhibit strong geometric variations. Thus, the calculation of the fiber breaking section is
a difficult task. In addition, the part from the plant where the fiber is extracted and its
growth conditions are also important parameters that must be taken into account when
calculating the Young’s modulus of plant fibers [19]. Finally, the composite elaboration
process can alter the mechanical properties of the fiber. Indeed, after our fabrication process,
the crushed alfa fibers were randomly distributed in samples, and their diameters were
between 40 and 150 µm and their lengths did not reach 15 mm (Figure 5). This led to an
aspect ratio of approximately 13.33, which seemed to correspond to the fiber bundles and
not to the single fibers. Accordingly, the experimental measurement for the fiber’s Young’s
modulus was not suitable because the larger the diameter of the studied fiber, the greater
the probability of the presence of a defect and the greater the probability of obtaining a
premature rupture [18].

Therefore, we have considered a numerical determination of Young’s modulus of alfa
fiber. Knowing the experimental Young’s modulus of our PP/alfa composites, we used a
reverse approach to the analytical homogenization models (Mori-Tanaka, self-consistent,
diluted, Voigt and Reuss, Neerfeld-Hill) and 2D and 3D PF approaches to determine the
Young’s modulus of alfa fiber. For this purpose, we plotted the evolution of the macroscopic
Young’s modulus of the PP/alfa composite (10%, 20%, and 30% by mass) as a function of
the Young’s modulus of the alfa fiber for all the homogenization models. Figure 6a shows
the results for the PP/alfa composite with 30 wt%. First, we can see that the Voigt and
Reuss models gave a very broad framing of the Young’s modulus of the composite. Then,
for the Mori-Tanaka, diluted, and self-consistent models, we noticed that the more the
Young’s modulus of the fiber increased, the more its influence on the Young’s modulus of
the composite decreased, while the PF 2D and 3D approaches showed a linear evolution of
the Young’s modulus of the composite as a function of that of the fiber. Using each of the
curves in Figure 6a, we projected the experimental value of the Young’s modulus of the
PP/alfa composite (30% by mass) on the axis representing the Young’s modulus of the fiber
(Figure 6b). However, as the experimental value of PP/alfa represented only an average
of over 10 test pieces, the value found by the reverse approach may be far from the real
modulus of the fiber. Thus, for greater precision in the calculations, this reverse approach
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was also applied to the results for PP/alfa at 10, 20, and 40 wt%. Table 1 summarizes the
results found for the different homogenization methods.
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Figure 6. (a) Evolution of the Young’s modulus of the PP/alfa composite (30% by mass) as a function
of the Young’s modulus of the alfa fiber for the different homogenization methods; (b) the reverse
approach to estimate the Young’s modulus of the alfa fiber.
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Table 1. Results of the reverse approach for all of the studied homogenization methods.

PP/Alfa Mori-Tanaka Self-Consistent Diluted Model Voigt Neerfeld-Hill PF 2D PF 3D

10% 16.24 15.16 17.35 7.03 11.03 24.30 35.22
20% 18.21 15.75 21.13 7.83 12.41 30.20 40.47
30% 17.23 14.21 21.74 8.03 12.78 31.40 36.57
40% 16.44 13.15 22.80 8.27 12.81 32.63 46.59

Average (GPa) 17.03 14.57 20.75 7.79 12.26 29.63 39.71

In the literature, the research works that used the same extraction process as us showed
that bundles of alfa fiber had a Young’s modulus between 18.2 and 28.43 GPa [17]. Thus,
the values found by Voigt, Neerfeld-Hill, Mori-Tanaka, and self-consistent were not in
agreement with the experimental measurements. Indeed, the latest experimental study on
the properties of a bundle of alfa fibers, published in 2014 by Khaldi et al. [20], showed
that the Young’s modulus of this fiber was 28.43 ± 4.07 GPa and its Poisson’s ratio was
0.34. The obtained value from the PF 2D approach was the only one falling within the error
range of this study.

3.2. Influence of the Volume Fraction of the Fiber on the Young’s Modulus of the Composite

To make a comparison among the homogenization models, we plotted in Figure 7
the evolution of the Young’s modulus of the PP/alfa composites as a function of the
fiber content for the analytical and numerical homogenization methods. This study was
conducted with an alfa fiber Young’s modulus of 28.43 GPa. The Young’s modulus of
composites reinforced with an alfa fiber content of 10–40 wt% was determined using the
homogenization models. Actually, the fiber content, which can reach up to 60–70% by mass
in composites reinforced with long fibers, cannot exceed 40% by mass when it comes to
short fibers and polymer matrices.

From Figure 7, it can be seen that the models of Voigt, Reuss, Neerfeld-Hill, and
self-consistent did not give an accurate prediction of the composite PP/alfa’s Young’s
modulus. For instance, the self-consistent, Voigt, and Neerfeld-Hill overestimated the
Young’s modulus of the PP/alfa 30% by 34%, 140%, 54%, respectively. While the Reuss
model underestimated it by 32% in comparison to the experimental results. As for the Mori-
Tanaka and diluted models, their results showed good agreement with the experimental
values. This is especially true at a low fiber rate.
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Figure 7. Evolution of the Young’s modulus of the PP/alfa composites according to fiber content for
the analytical and numerical homogenization methods.

It was noted that for a rate of fiber higher than 10% by mass, a significant difference
begins to appear between the numerical and analytical results. The values estimated by the
projected fiber approach followed the experimental results more closely, while the results
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of the Mori-Tanaka and diluted models slightly overestimated the effective modulus of
elasticity of the composite. Indeed, the error between the estimation of the 2D approach
and the experimental Young’s moduli of the PP/alfa composites at 10%, 20%, 30%, and
40% by mass were 2.7%, −1.9%, −4.3%, and −7.1%, respectively. Whereas, in the same
order, the error was −4%, −10%, −15%, and −18% for the 3D approach. As to the diluted
model, it overestimated the Young’s modulus of the PP/alfa composites at 10%, 20%, 30%,
and 40 wt% by 6.5%, 6.7%, 7.9%, and 7.6%, respectively. Thus, it can be seen that even at a
high rate of fiber (40% by mass), the PF approach, especially the 2D approach, can provide
calculated results with sufficient prediction accuracy.

4. Conclusions

In this study, two modeling strategies, one analytical (i.e., Mori-Tanaka, self-consistent,
diluted model, Voigt, Reuss, and Neerfeld-Hill) and the other numerical (i.e., projected fiber
approach) were used to predict the properties of a bio-composite reinforced with a randomly
distributed short alfa fiber. First, using a reverse approach, we determined the Young’s
modulus of alfa fiber according to each of these homogenization models. The confrontation
between the results obtained by the reverse approach and the experimental values found
in the literature showed that the analytical models underestimated the Young’s modulus of
the alfa fiber, while the 2D projected fiber approach estimation was in very good agreement
with the experimental data. On the other hand, the experimental Young’s modulus of the
PP/alfa composites (10%, 20%, 30%, and 40% by mass) was compared with those obtained
by the homogenization models. Note that analytical methods, apart from the Reuss model,
overestimated the effective elasticity modulus of the studied composites. Nevertheless,
it was noticed that the identification of the fiber’s and composite’s Young’s moduli by
the diluted model was closer to the experimental value than for the Mori-Tanaka and
self-consistent models. As for the projected fiber approach, its estimations were very close
to the experimental values. The 2D approach based on an optimized random technique
for fiber orientation remains more accurate than the 3D one that uses a simple generation
meshing of random fibers. Developments are in progress to obtain improved generation
3D mesh. As the orientation state of the fibers had a great influence on the results of the
inverse identification, we suggest the use a tomography device to identify exactly the
volume fraction of each orientation. Furthermore, inverse identification based on two
variables (i.e., Young’s modulus and Poisson’s ratio) will make the results more accurate
and represents work in progress. This approach will be reported in a future work.
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