Micromechanical Analysis of a Bio-Sandwich Application for Cylinder under Pressure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analytical Analysis
- Halpin–Tsai model
- Chamis model
- ROM model
- Hashin and Rosen model
2.2. FEM Analysis
2.2.1. Fiber-Reinforced Composite Numerical Homogenization
2.2.2. Element Type
2.2.3. Geometry and Finite Element Modeling
2.2.4. Loading and Boundary Conditions
3. Results and Discussion
4. Conclusions
- The change in volume fraction of fiber has a significant effect on elastic properties.
- The Young’s modulus rises in tandem with the reinforcement weight percentage.
- The Poisson’s ratio decreases as the weight fraction of reinforcement increases.
- The shear modulus is calculated using the analytical expression, and it is also increasing along with the reinforcement.
- The mechanical properties of , , , determined by the analytical micromechanical models agree with the experimental results.
- The analytical micromechanical models allow us to select the most appropriate theory used to determine the mechanical properties of PALF fibers that best fits to the experimental results. To forecast and , the Halpin–Tsai approach was chosen. For , it is Chamis, and for , it is ROM.
- The most appropriate theory was used with the FEM model to predict the mechanical properties of skin layers based on PALF, date palm and Alfa fibers, where the results are in efficient consensus.
- The present work shows the successful prediction of elastic properties of composites by Finite Element Analysis.
Author Contributions
Funding
Conflicts of Interest
References
- Maizia, A.; Hocine, A.; Dehmous, H.; Chapelle, D. Prediction of reliability analysis of composite tubular structure under hygro-thermo-mechanical loading. Mech. Adv. Mater. Struct. 2019, 26, 372–379. [Google Scholar] [CrossRef]
- Chapelle, D.; Hocine, A.; Carbillet, S.; Boubakar, M. Analysis of intermetallic swelling on the behavior of a hybrid solution for compressed hydrogen storage–Part II: Finite element method simulation. Mater. Des. 2012, 36, 459–469. [Google Scholar] [CrossRef]
- Tarlochan, F. Sandwich structures for energy absorption applications: A review. Materials 2021, 14, 4731. [Google Scholar] [CrossRef]
- Sanjay, M.R.; Arpitha, G.R.; Naik, L.L.; Gopalakrishna, K.; Yogesha, B. Applications of natural fibers and its composites: An overview. Nat. Resour. 2016, 7, 108–114. [Google Scholar] [CrossRef] [Green Version]
- Xia, M.; Takayanagi, H.; Kemmochi, K. Bending behavior of filament-wound fiber-reinforced sandwich pipes. Compos. Struct. 2002, 56, 201–210. [Google Scholar] [CrossRef]
- Hastie, J.C.; Kashtalyan, M.; Guz, I.A. Analysis of filament-wound sandwich pipe under combined internal pressure and thermal load considering restrained and closed ends. Int. J. Press. Vessel. Pip. 2021, 191, 104350. [Google Scholar] [CrossRef]
- Lotfi, A.; Li, H.; Dao, D.V.; Prusty, G. Natural fiber–reinforced composites: A review on material, manufacturing, and machinability. J. Thermoplast. Compos. Mater. 2019, 34, 238–284. [Google Scholar] [CrossRef]
- CoDyre, L.; Fam, A. Axial Strength of Sandwich Panels of Different Lengths with Natural Flax-Fiber Composite Skins and Different Foam-Core Densities. J. Compos. Constr. 2017, 21, 04017042. [Google Scholar] [CrossRef]
- Sadeghian, P.; Hristozov, D.; Wroblewski, L. Experimental and analytical behavior of sandwich composite beams: Comparison of natural and synthetic materials. J. Sandw. Struct. Mater. 2018, 20, 287–307. [Google Scholar] [CrossRef]
- Alhijazi, M.; Zeeshan, Q.; Qin, Z.; Safaei, B.; Asmael, M. Finite element analysis of natural fibers composites: A review. Nanotechnol. Rev. 2020, 9, 853–875. [Google Scholar] [CrossRef]
- Sailesh, A.; Arunkumar, R.; Saravanan, S. Mechanical properties and wear properties of kenaf–aloe vera–jute fiber reinforced natural fiber composites. Mater. Today: Proc. 2018, 5, 7184–7190. [Google Scholar] [CrossRef]
- El-Abbassi, F.E.; Assarar, M.; Ayad, R.; Bourmaud, A.; Baley, C. A review on alfa fibre (Stipa tenacissima L.): From the plant architecture to the reinforcement of polymer composites. Compos. Part A: Appl. Sci. Manuf. 2019, 128, 105677. [Google Scholar] [CrossRef]
- Potluri, R.; Diwakar, V.; Venkatesh, K.; Reddy, B.S. Analytical model application for prediction of mechanical properties of natural fiber reinforced composites. Mater. Today: Proc. 2018, 5, 5809–5818. [Google Scholar] [CrossRef]
- Ashwini, K.; Rao, C.M. Design and analysis of leaf spring using various composites—An overview. Mater. Today: Proc. 2018, 5, 5716–5721. [Google Scholar] [CrossRef]
- Dragonetti, R.; Napolitano, M.; Boccarusso, L.; Durante, M. A study on the sound transmission loss of a new lightweight hemp/bio-epoxy sandwich structure. Appl. Acoust. 2020, 167, 107379. [Google Scholar] [CrossRef]
- Sapiai, N.; Jumahat, A.; Mahmud, J. Mechanical properties of functionalised CNT filled kenaf reinforced epoxy composites Mechanical properties of functionalised CNT fi lled kenaf reinforced epoxy composites. Mater. Res. Express 2018, 5, 045034. [Google Scholar] [CrossRef]
- Elzayady, N.E.; Elghandour, E.I. Fracture resistance of composite structurs from hemp bio-fibers. J. Adv. Eng. Trends 2021, 40, 137–147. [Google Scholar] [CrossRef]
- Boria, S.; Raponi, E.; Sarasini, F.; Tirillò, J.; Lampani, L. Green sandwich structures under impact: Experimental vs numerical analysis. Procedia Struct. Integr. 2018, 12, 317–329. [Google Scholar] [CrossRef]
- Safri, S.N.A.; Sultan, M.T.H.; Jawaid, M.; Jayakrishna, K. Impact behaviour of hybrid composites for structural applications: A review. Compos. Part B: Eng. 2018, 133, 112–121. [Google Scholar] [CrossRef]
- Kiruthika, A. A review on physico-mechanical properties of bast fibre reinforced polymer composites. J. Build. Eng. 2017, 9, 91–99. [Google Scholar] [CrossRef]
- Zhang, K.-L.; Zhang, J.-Y.; Hou, Z.-L.; Bi, S.; Zhao, Q.-L. Multifunctional broadband microwave absorption of flexible graphene composites. Carbon 2019, 141, 608–617. [Google Scholar] [CrossRef]
- Alsubari, S.; Zuhri, M.Y.M.; Sapuan, S.M.; Ishak, M.R.; Ilyas, R.A.; Asyraf, M.R.M. Potential of natural fiber reinforced polymer composites in sandwich structures: A review on its mechanical properties. Polymers 2021, 13, 423. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, S.N.; Lopes, F.P.D.; Ferreira, A.S.; Nascimento, D.C.O. Natural-fiber polymer-matrix composites: Cheaper, tougher, and environmentally friendly. JOM 2009, 61, 17–22. [Google Scholar] [CrossRef]
- Nurazzi, M.; Khalina, A.; Laila, D. A review: Fibres, Polymer Matrices and Composites. Pertanika J. Sci. Technol. 2017, 25, 1085–1102. [Google Scholar]
- Lee, C.; Khalina, A.; Lee, S. Importance of interfacial adhesion condition on characterization of plant-fiber-reinforced polymer composites: A review. Polymers 2021, 13, 438. [Google Scholar] [CrossRef]
- Campilho, R.D.S. Natural Fiber Composites; CRC Press: London, UK; New York, NY, USA, 2016; Volume 49. [Google Scholar]
- Monti, C. Arthur Élaboration et Caractérisation d’une De, Structure Composite Sandwiche à Base Naturels; l’Université du Maine: Le Mans, France, 2016. [Google Scholar]
- Ali, A.; Shaker, K.; Nawab, Y.; Jabbar, M.; Hussain, T.; Militky, J.; Baheti, V. Hydrophobic treatment of natural fibers and their composites—A review. J. Ind. Text. 2018, 47, 2153–2183. [Google Scholar] [CrossRef]
- Pan, Y.; Iorga, L.; Pelegri, A.A. Numerical generation of a random chopped fiber composite RVE and its elastic properties. Compos. Sci. Technol. 2008, 68, 2792–2798. [Google Scholar] [CrossRef]
- Benabbes, A.; Siad, L.; Dormieux, L.; Liu, W.K.; Barlat, F.; Moon, Y.H.; Lee, M.G. A homogenization approach to the yield strength of spherical powder compacts. AIP Conf. Proc. 2010, 1252, 681. [Google Scholar] [CrossRef]
- Porfiri, M.; Gupta, N. Effect of volume fraction and wall thickness on the elastic properties of hollow particle filled composites. Compos. Part B Eng. 2009, 40, 166–173. [Google Scholar] [CrossRef]
- Migneault, S.; Koubaa, A.; Erchiqui, F.; Chaala, A.; Englund, K.; Wolcott, M.P. Application of micromechanical models to tensile properties of wood–plastic composites. Wood Sci. Technol. 2011, 45, 521–532. [Google Scholar] [CrossRef]
- Tserpes, K.; Tzatzadakis, V.; Bachmann, J. Electrical Conductivity and Electromagnetic Shielding Effectiveness of Bio-Composites. J. Compos. Sci. 2020, 4, 28. [Google Scholar] [CrossRef] [Green Version]
- Al-Fatlawi, A.; Jármai, K.; Kovács, G. Optimal design of a fiber-reinforced plastic composite sandwich structure for the base plate of aircraft pallets in order to reduce weight. Polymers 2021, 13, 834. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Jia, B.; Wang, X.; Zhang, M.; Zhu, Z. Research on microscopic properties of tibw/tc4 composites for drilling process. Materials 2019, 12, 2112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craveiro, D.S.; Loja, M.A.R. An assessment of thick nanocomposite plates’ behavior under the influence of carbon nanotubes agglomeration. J. Compos. Sci. 2021, 5, 41. [Google Scholar] [CrossRef]
- Kriwet, A.; Stommel, M. Arbitrary-Reconsidered-Double-Inclusion (ARDI) model to describe the anisotropic, viscoelastic stiffness and damping of short fiber-reinforced thermoplastics. J. Compos. Sci. 2020, 4, 37. [Google Scholar] [CrossRef] [Green Version]
- Djebloun, Y.; Hecini, M.; Djoudi, T.; Guerira, B. Experimental determination of elastic modulus of elasticity and Poisson’s coefficient of date palm tree fiber. J. Nat. Fibers 2019, 16, 357–367. [Google Scholar] [CrossRef]
- Imen, R.; Wadhah, S.; Rached, B.Y. Identification de la loi de comportement des matériaux composites à fibres organiques (Stipa tenacissima L) Identification of the behaviour law of organic fibre composite materials 5 éme Conférence. Int. Des. Energ. Renouv. Proc. Eng. Technol. 2017, 31, 37–42. [Google Scholar]
- Asim, M.; Abdan, K.; Jawaid, M.; Nasir, M.; Dashtizadeh, Z.; Ishak, M.R.; Hoque, M.E. A Review on Pineapple Leaves Fibre and Its Composites. Int. J. Polym. Sci. 2015, 2015, 950567. [Google Scholar] [CrossRef] [Green Version]
- Younes, R.; Hallal, A.; Fardoun, F.; Hajj, F. Comparative review study on elastic properties modeling for unidirectional composite materials. Compos. Prop. 2012, 17, 391–408. [Google Scholar] [CrossRef] [Green Version]
- Barbero, E.J. Finite Element Analysis of Composite Materials Using Ansys, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Habbar, G.; Maizia, A.; Hocine, A.; Ribeiro, J.; Dhaou, M.H. Micromechanical Analysis of a Bio-Sandwich Application for Cylinder under Pressure. J. Compos. Sci. 2022, 6, 69. https://doi.org/10.3390/jcs6030069
Habbar G, Maizia A, Hocine A, Ribeiro J, Dhaou MH. Micromechanical Analysis of a Bio-Sandwich Application for Cylinder under Pressure. Journal of Composites Science. 2022; 6(3):69. https://doi.org/10.3390/jcs6030069
Chicago/Turabian StyleHabbar, Ghania, Abdelhakim Maizia, Abdelkader Hocine, João Ribeiro, and Mohamed Houcine Dhaou. 2022. "Micromechanical Analysis of a Bio-Sandwich Application for Cylinder under Pressure" Journal of Composites Science 6, no. 3: 69. https://doi.org/10.3390/jcs6030069
APA StyleHabbar, G., Maizia, A., Hocine, A., Ribeiro, J., & Dhaou, M. H. (2022). Micromechanical Analysis of a Bio-Sandwich Application for Cylinder under Pressure. Journal of Composites Science, 6(3), 69. https://doi.org/10.3390/jcs6030069