
����������
�������

Citation: Habbar, G.; Maizia, A.;

Hocine, A.; Ribeiro, J.; Dhaou, M.H.

Micromechanical Analysis of a

Bio-Sandwich Application for

Cylinder under Pressure. J. Compos.

Sci. 2022, 6, 69. https://doi.org/

10.3390/jcs6030069

Academic Editors: Ahmed Koubaa

and Francesco Tornabene

Received: 28 December 2021

Accepted: 18 February 2022

Published: 23 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Micromechanical Analysis of a Bio-Sandwich Application for
Cylinder under Pressure
Ghania Habbar 1, Abdelhakim Maizia 1, Abdelkader Hocine 1, João Ribeiro 2,3,* and
Mohamed Houcine Dhaou 4,5

1 Controls Laboratory Tests, Measurements and Simulations Mechanics, Hassiba Benbouali University of Chlef,
Hay Salem, P.O. Box 151, Chlef 02180, Algeria; g.habbar93@univ-chlef.dz (G.H.);
a.maizia@univ-chlef.dz (A.M.); a.hocine@univ-chlef.dz (A.H.)

2 Higher School of Technology and Management, Instituto Politécnico de Bragança,
5300-252 Braganca, Portugal

3 Mountain Research Centre, Instituto Politécnico de Bragança, 5300-252 Braganca, Portugal
4 Department of Physics, College of Science, Qassim University, Buraydah 51452, Saudi Arabia;

m.dhaou@qu.edu.sa
5 Laboratory of Thermal and Energetic Systems Studies (LESTE), National School of Engineering of Monastir,

University of Monastir, Monastir 5000, Tunisia
* Correspondence: jribeiro@ipb.pt

Abstract: In recent years, there has been a growing replacement of synthetic fibers by natural ones,
particularly by autochthonous materials. In the case of Algeria, the most abundant plant resources are
the PALF (Pineapple leaf fiber), the date palm, and the Alfa fibers. In this work, the development and
use of analytical and numerical methods are proposed to predict the mechanical properties of layers
based on natural fibers that will be applied to manufacture skins of the sandwich cylinder. To achieve
these predictions, four analytical models were used, namely the Halpin–Tsai, the Chamis, the Hashin
vs. Rosen, and the ROM. The analytical results were compared with the numerical simulations and
experimental data. The prediction of the elastic properties of the three fiber-based eco-composites
showed an important dispersion in terms of stiffness.

Keywords: natural fibers; skin layer; Bio-Sandwich; FEM; analytical methods; micromechanical

1. Introduction

The composites’ materials have low weight, high rigidity, and excellent energy absorp-
tion, making them ideal for structural applications compared to traditional materials [1,2].
A typical sandwich structure is one of the configurations of composite materials; it consists
of two face sheets separated by a lightweight, thick core structure constructed of foam
or honeycombs [3]. Sandwich cores are available in a variety of shapes and materials,
including honeycomb and metals for aerospace, marine, piping, and vessel applications,
depending on industry standards and functional needs [4].

Sandwich pipes for vessel storage are multilayered, comprised of multiple lightweight,
synthetic fiber skins fully bonded to a polymeric core. They are an especially attractive concept
because of their high strength, stiffness-to-weight ratios, and corrosion resistance [5,6].

The synthetic fibers, which are used in the fabrication of the skin sandwich, have many
disadvantages: they are far less biodegradable and have less desirable cost and availability
in comparison with natural fibers [7].

Several research studies focus on the replacement of synthetic skins by eco-composites
based on natural fibers [8–10] in a sandwich structure, such as palm, kenaf, banana, ramie,
jute, leaf spring, flax, hemp, pineapple, and Alfa [11–18]. This interest is justified because of
their widespread availability, lightness, strength [19,20], biodegradability, sustainable and
renewable nature [21,22], in addition to their high specific modulus and low cost [16,23],
low wear of tooling, skin irritation, and environmentally-friendliness [24,25]. Natural
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fiber composites, as opposed to synthetic fiber composites, may provide more effective
recycling solutions due to their bio-based feedstock and capacity to generate additional
energy during incineration [23,26]. Bio-based composites appear to be very promising
alternatives to traditional composites, as they have lower densities and, as a result, particu-
lar property/density ratios comparable to glass fibers [27]. These properties reveal a new
horizon for researchers to replace the synthetic fiber reinforcements in composites [28].

Before achieving the sizing of the tubular eco-sandwich cylinder, a multiscale char-
acterization is performed, beginning with the micro and macro-mechanical scales. The
micromechanical approach (part 1) is used to predict the mechanical properties of bio skins.
Before analyzing the whole cylinder sandwich structure under different loading, the second
step focuses on understanding the behavior of a sandwich element in the tubular structure
through a macro-mechanical model (part 2).

A large number of Finite Element Models (FEM) and analytical micromechanical
models have been proposed in the literature for predicting various mechanical properties of
composite materials [29–32]. For the FEM model, the representative volume elements (RVE)
of bio-composites were established in different software, such as ANSYS, ABAQUS, and
DIGIMAT [30–32], to determine the micromechanical properties and failure mechanism of
bio-composites. Currently, many researchers are attempting to anticipate the natural fiber
polymer composite’s mechanical performance using various mathematical and numerical
methods. The rule of mixtures (ROM), inverted ROM (IROM), Halpin–Tsai model, Cox
model, Kelly–Tyson model [32], and Mori–Tanaka model [33–36] are the most widely
used and well-known theories for defining mechanical characteristics. In addition, several
additional models, such as the bridging model, Hashin and Rosen, Double-Inclusion
model [37], Christensen equation, and Chamis model, have been used to determine the
mechanical properties of composite materials.

This first part of the contribution aims to predict the mechanical properties of skin
layers made from PALF (Pineapple leaf fiber), date palm, and Alfa fibers, which are
among Algeria’s most abundant plant resources, at different volume fractions. To this end,
micromechanical analytical and FEM models have been developed under MATLAB 8.3 and
ANSYS 18.1 software. The influence of the volume fraction of reinforcement on Young’s
and shear modulus and Poisson’s ratios is studied.

The analytical models are based on four theories, Halpin–Tsai, Chamis, Hashin vs.
Rosen, and ROM. To choose a suitable theory from them that is in good agreement with the
experimental data obtained by Rakesh [13], a comparison is made for the composite made
from PALF fibers.

The suitable theory is used with the FEM model to predict the mechanical properties of
skin layers made from PALF, date palm, and Alfa fibers, where the results are inefficient in
combination. The FEM used four RVE, depending on the volume fraction of natural fibers.

2. Materials and Methods

The different material properties of both the matrix and fiber are shown in Table 1. By
altering the volume fraction of the fiber, material properties are utilized to establish the
mechanical properties of the composites, which are the longitudinal Young’s modulus (E11),
transverse Young’s modulus (E22), longitudinal shear modulus (G12), and major Poisson’s
ratio (v12).

Table 1. Properties of the constituents.

Material Young’s Modulus [GPa] Poisson’s Ratio Reference

Epoxy 3.75 0.35 [13]
PALF 29.3 0.30

DB date palm tree fiber 6.63 0.152 [38]
Alfa fiber 19.77 0.34 [39]

Figure 1 shows the different natural fiber plants used in this paper.
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2.1. Analytical Analysis

Many studies have focused on predicting the mechanical properties of composites.
To evaluate the elastic properties of composites, different micromechanical models have
been proposed, such as the Halpin–Tsai model, the Chamis model, the rule of mixtures
(ROM), and the Hashin and Rosen model. The analytical models were derived from [41].
The equations of these four models are written as:

• Halpin–Tsai model

E11 = EFVF + EMVM (1)

v12 = vFVF + vMVM (2)

E22 = EM·
(

1 + ζη ·VF

1− ηVF

)
with : η =


[

EF
EM

]
− 1[

EF
EM

]
+ ζ

 (3)

G12 = GM

(
1 + ζη ·VF

1− ηVF

)
(4)

• Chamis model

E11 = VFEF + VMEM (5)

E22 =
EM

1−
√

VF(1− EM/EF)
(6)

v12 = VFvF + VMvM (7)

G12 =
GM

1−
√

VF (1−GM/GF)
(8)

• ROM model

E11 = VFEF + VMEM (9)

E22 =
EFEM

EM·VF + EF·VM
(10)

v12 = VFvF + VMvM (11)
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G12 =
GF·GM

GF·VM + GM·VF
(12)

• Hashin and Rosen model

E11 = VFEF + VMEM +
4VFVM(vF − vM)2

VF
KM

+ 1
GM

+ VM
KF

(13)

E22 = 2(1 + v23)·G23 (14)

v12 = VF·vF + VM·vM +
VFVM(vF − vM)

(
1

KM
− 1

KF

)
VF
KM

+ 1
GM

+ VM
KF

(15)

G12 = GM·
GF(1 + VF) + GM·VM
GF·VM + GM(1 + VF)

(16)

where: E11 Longitudinal Young’s modulus; EM Young’s Modulus of Matrix; EF Young’s
Modulus of Fiber; VF Volume fraction of fiber; E22 Transverse Young’s modulus; Lateral
pressure module; GTT′ Transverse shear module; v12 Major Poisson’s ratio; vF Poisson’s
ratio of fiber; vM Poisson’s Ratio of Matrix; G12 Longitudinal shear modulus; GF Shear
modulus of fiber; GM Shear modulus of matrix; KF Lateral compression module of fiber;
KM Lateral compression module of matrix; ζ is called the reinforcing factor.

2.2. FEM Analysis
2.2.1. Fiber-Reinforced Composite Numerical Homogenization

Epoxy and one of the fibers (PALF, Palm fiber, or Alfa fiber) are the main components
of the Particle Reinforced Composite. To accomplish the analysis, the homogenization
approach is used for a fiber-reinforced composite by selecting continuous fibers as rein-
forcement. Figure 2 illustrates a uniform distribution of fiber in the epoxy, by using the
finite element software ANSYS 18.1 to solve the problem.
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2.2.2. Element Type

The ANSYS SOLID 186 element [42] is shown in Figure 3, which is a higher-order 3D
20-node solid element with quadratic displacement behavior, was used in this study. There
are 20 nodes in the element, each with three degrees of freedom (DOF) (translations in the
three nodal directions).
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2.2.3. Geometry and Finite Element Modeling

The representative volume element (RVE) used for the hybrid analysis has the form
of a square cube. Due to the symmetry in geometry, loading, and boundary conditions,
only one-fourth of the RVE’s cross-section is modeled and studied. As one-fourth of
the unit cell is used for FE modeling, the FE model consists of a rectangular prism with
dimensions x = 100 mm, y = 100 mm, and z = 10 mm, with an embedded one-fourth portion
of continuous fiber (PALF, Palm, or Alfa fiber) of radius r f at one of the square cube’s
corners, which is the center of the tubular fiber, where the length of the fiber is taken as
10 mm. As a result, the analysis will be faster and computational time will be lowered.

The radius of the fiber is calculated for various weight percentages of the fibers. The
weight percentages are converted into volume fractions. Four different volume fractions of
fiber have been studied for the analysis, ranging from 15% to 24% with an increment of 3%
of the volume fraction of the fiber. Thus, the following (17) is obtained:

r f =

√
V f × 1002 × 4

π
(17)

where: r f is the radius of the cylindrical fiber V f is the volume fraction of the fiber.
Figure 4 gives an example of the converged mesh models of a composite at different

volume fractions of natural fibers.
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2.2.4. Loading and Boundary Conditions

The finite element model is subjected to boundary conditions that force it to behave
as if it were a component of the entire array of composite materials. One-eighth of the
unit cell is modeled in the analysis due to symmetry in loads, geometry, and boundary
conditions. The mentioned symmetrical boundary conditions were unit displacement from
the symmetry of the problem. An overlapped volume connection is used between the fiber
and the matrix.
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A value displacement load of 1 mm is applied to the face to establish a uniaxial state of
stress in that direction, allowing the Young’s modulus and Poisson’s ratio of the resultant
composite to be predicted using simple Hook’s law. The uniaxial state of displacement on
the surface z = 10 mm is used to estimate longitudinal Young’s modulus E11 and Poisson’s
Ratio v12.

The area at x = 100 mm is exposed to a uniaxial displacement condition to predict
transverse Young’s modulus E22. A uniaxial stress condition is given to the area at y = 100 mm
to predict shear modulus G12. In Figure 5, it is possible to see the boundary conditions.
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A mesh convergence is performed on the longitudinal Young’s modulus of PALF at a
15% volume fraction to verify the accuracy of our findings. It is clear that we have arrived
at a converged solution. The results of the FEA model are independent of mesh size.

The results of the convergence analyses based on changing the number of elements in
the mesh are summarized in Figure 6.
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For varied mesh sizes, Figure 6 illustrates a fairly similar study for: longitudinal Young’s
modulus E11, Transverse Young’s modulus E22 and shear modulus G12. It demonstrates
that the FEA model’s results are unaffected by the number of elements in the mesh.

By choosing a unit value of applied strain, and once the problem defined by the
boundary conditions is solved, it is possible to compute the stress field σα , whose average
gives the required components of the elastic matrix, one column at a time, as:

Cαβ = σα =
1
V

∫ ·
V

σα(x1, x2,x3)dV with ε0
β = 1 (18)

where: α, β = 1. The integral sin (18) is evaluated within each finite element using the
Gauss–Legendre quadrature. Commercial programs, such as ANSYS®, have the capability
to compute the average stress and volume, element by element [42].

For the elastic domain:

W =
∫ ε

0
σdε =

1
2

σε =
σ2

2E
(19)

3. Results and Discussion

The results of the analytical models developed for the fiber reinforced composite are
compared to the experimental results for the PALF/epoxy unidirectional composite from
Rakesh’s study [13], as shown in figures below.

The predicted results for all the analyzed models agree with the experimental data
for composites (PALF/epoxy) with varying volume fractions. To characterize the tensile
properties, unidirectional composite specimens were manufactured according to the nec-
essary standard. The specimens were 160 mm, 12.5 mm, and 3 mm in size, respectively.
For each volume fraction of the fiber, five identical samples were manufactured, and all
specimens were examined using an electronic tensometer at a strain rate of 0.5 mm/min.
Single fiber testing was used to characterize the PALF fiber’s tensile modulus according
to the ASTM D3379 standard. A total of 23 specimens were evaluated in order to obtain
an exact figure for the PALF fiber’s property [13]. The composites’ longitudinal Young’s
modulus increases as the volume fraction of fiber rises, as can be shown in Figure 7.
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Figure 7. Comparison (analytical vs. exp) of Longitudinal Young’s modulus E11 of PALF/epoxy in
terms of volume fractions.
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Figure 8 shows that the transverse Young’s modulus E22 of composites increases along
with the volume fraction of fiber, but the increment is lower when compared with the
magnitude of E11. The closest agreement with the experimental results belongs to Halpin
Tsai model.
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Figure 8. Transverse Young’s modulus E22 of PALF /epoxy in terms of different volume fractions
of fiber.

The analytical analysis results are compared to the experimental data in Figure 9.
When compared to experimental data, the results generated by the analytical model of
Chamis offer remarkably similar results.
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Figure 9. The comparison of shear modulus G12 of PALF/epoxy in terms of volume fractions.

It can be seen that the predicted values of the Poisson’s ratio v12 for all tested models
are in good agreement; this is illustrated in Figure 10.
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Figure 10. The Poisson’s ratio v12 of PALF/epoxy in terms of VF.

The first analytical part permitted us to select the analytical method that allows us to
have mechanical properties that best converge with the experimental results. To forecast
E11 and E22 , the Halpin-Tsai approach was chosen. For G12, it is Chamis, and for v12, it
is ROM. A FEM approach is established and compared with the results of the analytical
analysis in order to strengthen our prediction.

The variation of E11 and E22 as a function of the volume fraction of natural fibers,
obtained by Halpin-Tsai and numerical analysis.

For all composites with varied VF , the predicted results of FEM for E11 are in agree-
ment with the analytical results. These examples are depicted in Figure 11. The prediction
of the longitudinal modulus shows that the composite based on PALF fibers presents the
best behavior in tension.
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Figure 11. Predicted analytical (Halpin–Tsai model) and numerical results for E11 in terms of VF.

The FEM anticipated results are in good correlation with the analytical results.
Figure 12 shows a comparison of the results obtained for E22 using the FEM and the
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analytical analysis. The prediction of the transverse modulus show that the composite
based on PALF fibers presents the best behavior in compression.

J. Compos. Sci. 2022, 6, x FOR PEER REVIEW 10 of 14 
 

 

The variation of 𝐸ଵଵ and 𝐸ଶଶ as a function of the volume fraction of natural fibers, 
obtained by Halpin-Tsai and numerical analysis. 

For all composites with varied  𝑉ி , the predicted results of FEM for 𝐸ଵଵ are in agree-
ment with the analytical results. These examples are depicted in Figure 11. The prediction 
of the longitudinal modulus shows that the composite based on PALF fibers presents the 
best behavior in tension. 

 
Figure 11. Predicted analytical (Halpin–Tsai model) and numerical results for 𝐸ଵଵ in terms of 𝑉ி. 

The FEM anticipated results are in good correlation with the analytical results. Figure 
12 shows a comparison of the results obtained for 𝐸ଶଶ using the FEM and the analytical 
analysis. The prediction of the transverse modulus show that the composite based on 
PALF fibers presents the best behavior in compression. 

 
Figure 12. Predicted analytical (Halpin–Tsai model) and numerical results for 𝐸ଶଶ in terms of 𝑉ி. 

0.14 0.16 0.18 0.20 0.22 0.24
4

5

6

7

8

9

10

E1
1 

[G
Pa

]

Volume fraction of  fiber

 PALF FEM  Alfa FEM   Palm FEM 
  PALF H.Tsai  Alfa H.Tsai  Palm H.Tsai

0.14 0.16 0.18 0.20 0.22 0.24
4.0

4.2

4.4

4.6

4.8

5.0

5.2

5.4

5.6

5.8
E2

2 
[G

Pa
]

Volume fraction of  fiber

 PALF FEM    Alfa FEM    Palm FEM 
 PALF H.Tsai  Alfa  H.Tsai  Palm  H.Tsai

Figure 12. Predicted analytical (Halpin–Tsai model) and numerical results for E22 in terms of VF.

Chamis and numerical analysis were used to determine the variation of G12 as a
function of the volume fraction of natural fiber. When compared to analytical results, the
numerical approach of finite element analysis yields good results, this can be found in
Figure 13. The prediction of the shear modulus shows that the composite based on PALF
fibers presents the best behavior in shear.
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Figure 13. Predicted analytical (Chamis model) and numerical results for Shear Modulus G12 in
terms of VF.

Concerning the major Poisson’s ratio, the results were obtained only from the ROM
model and the FEM. Concerning the Poisson’s ratios, the obtained results of the analytical
models show that the Alfa/epoxy has the highest Poisson’s ratio compared to PALF/epoxy
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and palm/epoxy. Figure 14 shows that for the major Poisson’s ratio v12, all analytical and
numerical models correlate well with each other.
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4. Conclusions

In the present work, models were developed and used analytical and numerical
methods to predict some mechanical properties of composite layers based on natural fibers.
To accomplish these goals, we used four micromechanical analytical models, namely the
Halpin–Tsai, the Chamis, the Hashin vs. Rosen, and the ROM. The analytical results
were compared to the numerical simulations (FEM) and experimental data. The analyzed
composites have a matrix of epoxy resin which is reinforced by the natural fibers, PALF,
DB date palm tree fiber and Alfa fiber.

Based on this study, it is possible to summarize the following conclusions:

• The change in volume fraction of fiber has a significant effect on elastic properties.
• The Young’s modulus rises in tandem with the reinforcement weight percentage.
• The Poisson’s ratio decreases as the weight fraction of reinforcement increases.
• The shear modulus is calculated using the analytical expression, and it is also increas-

ing along with the reinforcement.
• The mechanical properties of E11, E22, G12, v12 determined by the analytical microme-

chanical models agree with the experimental results.
• The analytical micromechanical models allow us to select the most appropriate theory

used to determine the mechanical properties of PALF fibers that best fits to the experi-
mental results. To forecast E11 and E22, the Halpin–Tsai approach was chosen. For
G12, it is Chamis, and for v12, it is ROM.

• The most appropriate theory was used with the FEM model to predict the mechanical
properties of skin layers based on PALF, date palm and Alfa fibers, where the results
are in efficient consensus.

• The present work shows the successful prediction of elastic properties of composites
by Finite Element Analysis.

However, the predictions for the elastic properties of the three fiber-based eco-composites
showed a strong dispersion in terms of stiffness. Nevertheless, in future works, it is possible
to test several fiber combinations to determine the best combination that has high values for
mechanical properties in all directions. With this information, it is feasible to manufacture
the composite without trying each combination with experimental tests, which will be a
costly and time-intensive process.
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